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Summary. The chemical bond is a stabilization of a system with a characteristic nuclear configuration,
electronic structure, and a set of physico-chemical properties. The physical origin of the chemical bond
lies in an acceleration of the electrons by a joint potential of several nuclei. The quantitative description
of the chemical bond in the dihydrogen molecule can be treated within the MO or VB method. Both
of them have some intrinsic drawbacks which can be overcome when the MO method is followed by
the configuration interaction, and the limited VB method by its complete counterpart that includes the
“ionic structures”. In the end, both results are equivalent as they include the correlation energy. The
amplitudes of the two-electron wave functions show that the maximum probability is obtained when
the electrons are correlated — kept apart at the individual centers. This condition is very natural for the
limited VB; it includes a part of the correlation energy. Therefore the VB method is a better reference
for the evaluation of the exchange coupling constant that separates the ground singlet state from the
lowest triplet one.

Keywords. Chemical bond; Molecular orbital method; Valence bond method; Configuration inter-
action; Electron density.

Introduction

The ambition of the present communication is to bring a review of basic formulae
for the energies of the lowest energy states in the prototypal molecule of the chem-
ical bond — the dihydrogen molecule and the related molecular cation and anion.
The project involves hand, but ab initio calculations at different levels of
sophistication: the simple molecular orbital (MO) method, the limited valence
bond (LVB) method, the MO method improved by the configuration interaction
(MO +CI), and finally, the complete VB (CVB) method. Each of these stages
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results in some energy formulae in which integrals over the basis set functions (the
atomic 1s orbitals) occur.

However, these formulae are method-dependent and bring little insight into the
physical nature of the chemical bond [1-22]. In no case it could be concluded that
the chemical bond results as a consequence of the exchange integral; such an
integral is absent in the dihydrogen cation which is bound by the chemical bond
either. Within the MO method the sign of the hybrid integral plays a key role in
stabilisation of the ground state of the dihydrogen molecule. The only correct
statement is that the chemical bond appears as a consequence of the acceleration
of electrons by a joint potential of several nuclei — the result following from the
application of the virial theorem.

Both, the MO and the LVB methods, possess some intrinsic defects. We will
see that the MO method involves the ‘““valence structures” and the ““ionic structures”
with the same weight whereas the LVB ignores the ‘““ionic structures” completely.
The results of the MO + CI method and the CVB method are exactly the same:
they involve the maximum correlation energy in the given basis set. The impact of
the electron correlation is not only in the improvement of the energy of the ground
state. It has a serious consequence in the amplitude of the two-electron wave
function: this show a maximum probability when the electrons are correlated —
kept apart at the individual centers.

The Virial Theorem

The kinetic energy operator and the potential energy operator in atoms and mole-
cules have a definite form. This fact implies that a relationship between the mean
values of the kinetic energy and the potential energy exists. The relationship is
fulfilled for the exact wave function as well as for the best trial wave function in
terms of the variation principle. We will derive that the virial ratio in atoms and in

equilibrium geometry of molecules is exactly v = (V) /(T) = —2 (atomic units are
used throughout this chapter).
Let ¥Y(r1,...,r,) be an n-electron wave function yielding the mean value

described by Eq. (1).
(A) = (P|A|P) = J~--Jqf*(rl,...,r,,)Asrf(rl,...,rn)drl---dr,, (1)

Now we introduce a scaling factor, s, which stretches all coordinates uniformly;
thus we have the scaled wave function ¥(sry,...,sr,) which gives the following
mean value (Eq. (2)).

(As) = (PA|P,) = J . J PE(sr1, ..., sr)AP(sry, ... sr)d(sr) - d(sr)  (2)

This relationship can be modified as follows in Eq. (3).

(Ag) = 5" J » J P (sry, .. sr)[sTmA(r - r)| P (s - sr)d(sry) - d(sry)
(3)

Let us assume that our operator obeys the following relationship (Eq. (4)).

sfmzzl(rl, B A As(srl, ) (4)
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Then the mean values in scaled and unscaled coordinates interrelate as shown in
Eq. (5) where we utilize a property that the scaling leaves the integration limits
(—00, +00) unaffected.

(As) = 5" (WSIA|P5) = 5"(A) (5)

The fulfillment of the scaling hypothesis should be examined for every operator
separately. As a result of the analysis, the power m results.

In an n-electron atom the kinetic energy operator (expressed in polar coordi-
nates) has the form shown in Eq. (6).

() = (~1/2) Zldi () + 1 Z Ve ©

The scaled kinetic energy operator, from simple algebra, is given by Eq. (7) so that
we arrive at m = 2. The potential energy operator is described by Eq. (8).

YA"(sr) = s_zf’(r) (7)
V(r):—znjf—:—l-zn:r% (8)

The scaled potential energy operator obeys the relationship shown in Eq. (9) giving
rise to m = 1.

sV (r) = V(sr) 9)

On summary, the following relations hold true (Egs. (10) and (11)) and the total
energy of the atom becomes as given by Eq. (12).

(T;) = sX(T) (10)
(Vs) = s(V) (11)
(Es) = (T,) + (V,) = s(T) + s(V) (12)

The total atomic energy is subject to variation with respect to the scaling factor s
(Eq. (13)) and we arrived at the optimum value (Eq. (14)).

%:mm +(V)=0 (13)
Sopt = —(V)/[2(T)] (14)

If our trial wave function is already the optimum wave function, the scaling of
coordinates is incapable of energy lowering. Then s, = 1 applies and conse-
quently the virial ratio (for atoms) is given by Eq. (15).

_ (V(som))
(T(sep0)

For a diatomic molecule the wave function includes an internuclear distance R
in the role of a parameter (the Born-Oppenheimer approximation is utilized), so

= -2, [exactly] (15)
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that we have ¥(ry, ..., r,; R) and its scaled counterpart ¥Y(sry, ..., sr,; sR). Using
a substitution of t = sR we can write Eqgs. (16)—(18).

(Ty) = (T(s,1)) = s*(T(1,1)) (16)

(Vi) = (V(s,1)) = s(V(1,1)) (17)

(Es) = (Ts) + (Vi) = sX(T(1,0)) + s(V(1,1)) (18)

The variation of the total molecular energy brings Eq. (19).

8<EY> o 26<T(17I)> 8<V(17t)> _
55 =25(T(1,1)) + (V(1,1)) +s 5 TS 5 =0 (19)
This equation can be rewritten into the following form (Eq. (20)).
2s(T(1,0)) + (V(1,1)) + s°R 8<T((91t’ ) + sR 6<V((91, D) _ 0 (20)
We utilized the identity (Eq. (21)) fulfilled for any function.
0 0 [ ot
500 =5 (5 po 21)
In our case of t = sR we get Eq. (22).
0 0
S (0) =R f () 22)

Under the assumption that the wave function is already optimum, the scaling
factor becomes s, = 1. Collecting the kinetic and the potential energy terms into
the total molecular energy (Eq. (23)) we finally get Eq. (24).

o(T(1,1)) +8<V(1,t)> J(E(1,1)) JO(E) O(E)

ot o 0t O(sowR) OR (23)
2(T>+<V>+R<%) =0 (24)

This is a form of the virial theorem for diatomic molecules. In the optimum geo-
metry, however, the energy gradient vanishes and thus we arrive at the same
expression for the virial ratio as for atoms.

For a diatomic molecule there is a problem of two variables: R (internuclear
distance) and a (orbital exponent). For a fixed R there exists a value of aqp(R) for
which the virial equation is fulfilled. Only a single pair {ap, Ro } yields the virial ratio
v = —2 (exactly). For different molecular states the aoy(R) are different functions.

The Physical Nature of the Chemical Bond

A bound system is more stable relative to its constituents: it has a lower energy
relative to the sum of the energies of the constituents so that the bonding energy is
given by Eq. (25).

Ey = ZEi(constituents) — E(system)>0 (25)
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The chemical bond is the raison d’etre of molecules whereas the intermolecular
interactions are responsible for the existence of the condensed phase. Individual
subsystems bound due to intermolecular interactions retain partially their chemical
individuality and chemical properties.

Although the border between the systems stabilized by the chemical bond and
the intermolecular interaction is not well established, the systems bound by the
chemical bond, in general, possess much higher stabilization (binding) energy and
the equilibrium separation appears at lower distances.

Balance of the Kinetic and Potential Energy

In atoms, the virial theorem implies that Eq. (26) is valid.

<E>at = _<T>at = <V>at/2 (26)
In the equilibrium geometry of a molecule, when 9(E)/OR = 0, the virial theorem
adopts a similar form (Eq. (27)).

<E>mol = _<T>m01 = <V>mol/2 (27>
Since the molecular binding energy is positive (Eq. (28)) the application of the
virial theorem ends up in two conditions (Egs. (29) and (30) or (31) and (32)).

E, = <E>at - <E>mol>0
_<T>at> - <T>mol
<V>at/2> <V>mol/2

<T>mol > <T>at
i.e., the kinetic energy increases upon formation of a molecule

<V>mol < <V>at (32)
i.e., the potential energy decreases (becomes more negative).

This means that in any molecule: the electrons are moving faster as they are
accelerated by the increasing potential of several nuclei. Such a situation applies
only when the electrons are concentrated in the internuclear region.

The binding of a hydrogen molecule is E,(H,) = 4.7eV. Using the statement
of the virial theorem we arrive at Egs. (33) and (34).

Ey = —2(T(H)) + (T(H,)) = 4.7¢eV (33)
Eo = [2(V(H)) — (V(H,))]/2 = 4.7 eV (34)

This means that the kinetic energy increased by 4.7eV whereas the potential
energy decreased by 9.4 eV. The potential energy of a molecule, however, includes
the internuclear repulsion term Vyn, which is easily evaluated knowing the inter-
nuclear distance (Ry="74.1pm): Van(Rp) = 19.4¢eV.

Energy Functions

Let us consider the molecular energy as a function of the number of electrons, N,
and the external potential (the electron-nuclear attraction plus any other potential
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Table 1. Derivatives of the electronic energy [23-25]

Order Scalars (molecule characteristics) Functions (site characteristics)

0 Energy E = E[N, v(7)]

1

OE Electron densit
Chemical potential p = ( ) ectron density
v(7)

N pfp) = (505 ).+ Jomar=n

O’E . .
2 Hardness n = | — Fukui function
N/ 7 (7 PE
Sofiness S =171 0= (%), (s ) =1

Response function (7, 7') = (83,0((:)))
v(7) Jy

applied to the molecule), v(¥). Then it is legitimate to write Eq. (35) and a different
degree of differentiation yields the energy functions as listed in Table 1.
E = E[N, u(7)] (35)

A contemporary definition says that the electronegativity equals to the negative
of the chemical potential of an electron: the resistance of the system (an atom or
molecule) against the change of the number of electrons (N) (Eq. (36)).

OE(A)
A)=—pte = ———— 36
X(A) = —pe 3N (36)
Such a differential definition does not allow a direct measurement since the number
of electrons can alter only by discrete quanta.

Some theoretical arguments allow expressing the electronegativity in the form
introduced by Mulliken (Eq. (37)) where the ionization energy, I4, and the electron
affinity, A4, occurs (a recommended sign convention of the electron affinity is
applied: this is positive for the energy given to the system).

Iy — Ay
X(A) = — T 05 (37)
Table 2. Some electronegativity scales
Type Key formula
1. Pauling IXa — X8| = ClEs_5 — (Ea_aEg_5)"""]"/%; xu = 2.1 - origin
of the scale; E4_p — bond dissociation energy
2. Mulliken Iy — Ay L
X4 = T; 14 — ionisation energy; A4 — electron
affinity defined as a supplied energy
_ Z .
3. Allred-Rochow XA =a 26 ff, 4 + b; Zesr, 4 — effective nuclear charge according
rcov,A
to Slater rules; rcov, 4 — covalent radius
V4
4. Gordy A=a offA g
Teov, A
5. Sanderson Dy Zett, A
XA = =a—3

. D=
Dinterpol,A Teov, A
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However, some other definitions (or scales) are available among which the
Pauling and the Allred-Rochow definition are well known (Table 2).

Electronegativity expresses the ability of the system to attract its electrons and
thus the lower the electronegativity the greater the amplitude of electrons and
consequently the higher their mobility, and vice versa. Therefore the electronega-
tivity is helpful in explaining differences between different types of chemical bond.

Types of the Chemical Bond

There are three principal kinds of chemical bond: the covalent, metallic, and the
ionic bond (Table 3) whose key features are shortly reviewed.

1) When the electronegativity of both bonding partners is high, the covalent bond
is formed (like in H,O and H,C=CH,):

a) the bonding electrons tend to be localized in the direction of the atomic
linkage;

b) in addition to the single bond, multiple bonds with the nodal structure (7 and
0) also appear;

c) a saturation property means that only a limited number of bonds are formed
(e.g. the carbon atom has a maximum of four).

2) When the electronegativity of both bonding partners is low, the metallic bond is
formed (like in metallic Al):

a) the electrons possess a high mobility and are shared by a whole solid which
allows us to speak about an electron gas;
b) the bond is delocalised over a number of centers and has no saturation property.

3) When the bonding partners differ in their electronegativities substantially, the
ionic bond is formed (like in NaCl):

a) it has neither the directional nature nor the nodal structure;

b) it does not depend upon the quality of the ions since the cohesive forces are
the Coulomb interactions among ions;

c¢) it does not possess a saturation property.

Table 3. Characteristic features of the individual types of the chemical bond

Covalent bond Metallic bond ITonic bond

High electronegativity Low electronegativity Different electronegativity
of the bonding partners of the bonding partners of the bonding partners
Saturation property No saturation No saturation

Directional, almost localized Delocalized No directional
Multiplicity No multiple bonds

Nodal structure No nodal structure

Strong overlap of atomic Strong overlap of atomic Low overlap of atomic
wave functions wave functions wave functions

Low amplitude and low High amplitude and high Low amplitude and no mobility
mobility of electrons mobility of electrons of electrons (insulators)

(insulators) (conductors, electron gas)
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Hydrogen

Covalent
r-Delocalized 5-C o-C

Si ZnS

Fe TiC SiO
Al NaTl CsF

Fig. 1. Types and examples of the chemical bond

Frequently the actual chemical bond is a combination of the limiting cases as
shown by the central triangle in Fig. 1.

Description of the Chemical Bond

Several theoretical approaches were developed that are capable of describing the
chemical bond:

1. the molecular orbital (MO) method (eventually followed by the configuration
interaction — CI) plays a central role at present;

2. the valence bond (VB) method, which is rarely used at present;

3. the method of localized MOs preceded by the hybridisation of atomic orbitals

and eventually followed by the perturbative CI (the PCILO method), which is

again rarely used at present;

the density functional theory (DFT), which is of increasing popularity;

. the methods for periodic solids — the crystal orbital (CO) method, the ASW
(Augmented Spherical Waves), the APW (Augmented Plane Wave), efc.

The MO and VB methods will be described in detail later.

TS

Angular Momentum

The angular momentum of a massive particle about the origin is introduced as the
vector normal to the plane of motion and can be expressed in the form of Eq. (38).

I=7Fxp (38)
If we apply the operator expression for p = —ihV in its differential form, 2then 2the
following commutation relations can be derived (Eqgs. (39)—(44)) where [ =1, +

2 A2, ~ . .
ly + lZ is the square of the angular momentum, and H — the Hamiltonian; for a =
X, ¥,2

L1, — 1,1, = inl, (39)

LI, — L1, = inl, (40)
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L1, — 11, = inl, (41)
1] =0 (42)
H,7]=0 (43)
[H,1,] =0 (44)

Only three of these operators commute simultaneously: H, 22, and one compo-
nent (say the third component /,) of the angular momentum. Thus we can use an
indexation |¥;) = |E,\, u) for ,a set of eigenstates which simultaneously are
eigenstates of the operators H, [ , and /.. This result plays a key role in the theory
of the electronic structure of atoms: an arbitrary eigenfunction can be expanded as

a sum over eigenfunctions common for the operators H, I and ZZ (Eq. (45)).
|¥:) = Z GlE, A\, 1), (45)

Using the shift operators, the following results can be derived (Egs. (46)—(49)).

L|l,m) = mh|l, m) (46)

i1, my = I(1+ 1)1, m) (47)
mmm:%w—mw+m+nW%mm+m+%w—m+nu+mW%mm—n
(48)
mmm:%w—mw+m+nW%mm+n—%w—m+n@HmW%mm—n

(49)

The last two equations are nothing else but the statement quoted above: the eigen-
functions of /, and /, operators are expanded as a sum over eigenfunctions com-
mon for the operators H, ', and L., i.e. |I,m).

The eigenfuctions of the orbital angular momentum can be explicitly expres-
sed in the form of the spherical harmonic functions Yj,. The restriction of
[=0,1,2,... is accepted for the orbital angular momentum in order to keep a
geometrical meaning that the rotation about the angle 27 leaves its wave function
invariant. However, the quantum number / could adopt also half-integer values, say
1/2, 3/2, etc. This set is reserved for the spin; the spin of the electron is s =1/2.
Then the rotation about the angle 47 leaves its wave function invariant.

Wave Functions

In a many-electron system the appropriate wave function should fulfill two basic
requirements:

1. it is antisymmetric with respect to interchange of two electrons;
2. it is an eigenfuction of the compound angular momenta.
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Table 4. List of the wave functions in the H, molecule

Wave function Eigenfunction Form Number

One-electron functions

Atomic 1s orbitals 21, Yy = (a3/7r)l/ze’”’f* 2
Molecular orbitals o (i) = (2 £ 2845) P [1ha (i) + p(i)] 2
Spin functions 5,5, a(ms = 4+1/2), B(ms = —1/2) 2
Spin-orbitals ¢1 through ¢4; e.g., ¢1(i) = ¢ (i)a(i) 4
Two-electron functions

Two-electron spin 82, 8. n(S, Ms); e.g., 1(0,0) = [a(1)B3(2) — B(1)(2)]/V2 4
functions

Spatial wave function L2, L, O through Oy4; e.g., @1(12g) =p+(D)es(2) 4
Product functions Q; through Q4 4
Determinantal wave L. S. @, through &g; e.g., |<151(12g: aé)) = |ps, @4 6
function

True wave function I2, L., 8,8, ¥, through ¥ 6

When the spin-orbit coupling is ignored, the orbital and spin angular momenta are
1ndependent of each other and the second requirement is to be obeyed individually
for the i’ L, S and S operators.

In thlS section we will introduce several kinds of wave functions which
we will handle later. These are compiled in Table 4 and their short discussion
follows.

a) Two ls-atomic orbitals 14 and 1)g centered at the atom A and B; each of them is
a solution of the Schrodinger equation for the hydrogen atom and they have the
form shown in Egs. (50) and (51).

U = (a® /) Pem (50)
vp = (a/m)" P (51)

The orbital exponent o scales the atomic orbital: it expands when a>1 and
compresses when a<<1.

b) Two molecular orbitals ¢, and p_ that are linear combinations of atomic
orbitals; they are linear combinations of the atomic orbitals (Eq. (52)) and since
the centers are equivalent the only parameter is the normalization constant N .
which can be easily determined from the normalization condition.

@ (i) = cxhai) + cLyp(i) = Ne[tha (i) = p(i)]
= (2£2845) " [a (i) £ ¥5(0)] (52)

The symbol i specifies that the i-th electron occupies the molecular orbital.

¢) Two spin functions « and (3 for the spin-up orientation (m; = +1/2) and spin-
down orientation (m; = —1/2). Their actual form need not (and cannot) be
specified as only rules for handling with them are known (the orthonormality
condition).
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d) The two spin functions are used to form four two-electron spin functions of the
type 1(S, Ms) (Eqgs. (53)—(56))

1(0,0) = [a(1)5(2) - B(1)a(2)}/V2 (53)
1(1,0) = [(1)B(2) + B(1)e(2)]/V2 (54)
(1, +1) = a(l)a(2) (55)
n(1,-1) = 5(1)5(2) (56)

While the first function for the spin singlet (S = 0) is antisymmetric with
respect to interchange of the electrons, the remaining functions for the spin
triplet (S = 1) are symmetric in this respect.

The transformation of the local-spin wave functions to the molecular-spin
ones can be performed with the help of the transformation matrix U for
coupling of two spins s; = s, = 1/2 (Egs. (57) or (58)).

S, Ms) = Ul(s1, 52), m1, ma) (57)
0,0) 0 —1/v2 1/v2 0\ [|-1/2,-1/2)
L= | _|1 0 0 o] |-1/2,+1/2) (58)
1,0) 0 1/v2 1/v2 0| |+1/2,-1/2)
1, +1) 0 0 0 1) \|+1/2,+1/2)

The members of the unitary matrix U are nothing but the Clebsch-Gordan
coefficients (s1,s2,m;, my|SM) for the addition of the angular momenta.

e) Four molecular spinorbitals are formed by combining the two molecular orbit-
als and two spin functions, namely ¢;(i) = i ()a(i), ¢2(i) = o4 (0)5(0),
d3(i) = p_(i)a(i), and ¢4(i) = p_(i)B(i). These still are one-electron wave
functions and a shortened notation for them used to be applied: ¢; = .,
=0, ¢p3=¢_,and ¢4 = @_.

f) Six determinantal wave functions can be created form four molecular spinorbi-
tals and two electrons: @; through ®¢. This number matches the number of
combinations (Eq. (59) and Fig. 2).

[ spinorbitals \ (4
"= ( electrons ) N <2> =0 (59)

094—*— ? _‘_ ‘ ?

D> 24 3%, 3y

Fig. 2. Six electron configurations of the H, molecule
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Each Slater determinant refers to a definite electron configuration (Fig. 2) and
guarantees the antisymmetry condition (Egs. (60)—(65)).

21("Sg 2 7)) = |, ¢ (60)
|22('%, 1 0p)) = |-, p_| (61)
B3, : olol)) = o1, o] (62)
D420 2 0}0y)) = |64, @] (63)
|@5(u : 0g0))) = @ -] (64)
|@6(u : 0oy)) = |+, @] (65)

For instance one of the Slater determinants is given by Eq. (66) and when the
electrons 1 and 2 are interchanged, then the resulting wave function alters its
sign as shown by Eq. (67).

o] = (2)[e-(Da(l)e-(2)8(2) = - (2)a(2)p-(1)B(1))
= [p- (- (2)](1/V2)[a(1)B(2) — B(1)a(2)] (66)
)

2,01 = @) le-(1B(1e-(2)a(2) — - (2)B(2)¢-(1)a(1)]

= [p-(1)e-(2)](1/V2)[~a(1)5(2 )+ﬂ( Ja2)] = —le—, @ | (67)
Remember that a single Slarer determinant guarantees that this is an eigenfunction
of the projections of the orbital L, and spin S, angular momenta operators. How-
ever, this is not an eigenfunction of the total angular momentum operators L’ and
S in general.

g) Six true wave functions W, through ¢ guarantee that the true state vectors
]S M) are the eigenfunctions of all angular momenta operators, L L., 52 and
SZ, this is provided by an eventual linear combination of Slater determinants
(functions ¥'s and ¥¢) (Egs. (68)—(73)).

#,('54,0,0)) = |#,('%, : 02))

— - (Dp+ ()] 5= [a(DAQ) - B)a(2) (68)

[\

[P2('5g,0,0)) = [@2('%, : 7))

u

= lp-(De-(2)] \% [(1)5(2) = B(1)a(2)] (69)

’T3(3Eu7 17+1)> = |(p3(3211 : O';O’l»

- % - (De-(2) — o1 (2)p-(Dla(Da(2)  (70)

P40, 1, —1)) = [@4(Sy : j0))
1

= les(Ne-2) ~ . Qp-(MlBMAR) ()
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’lp5(3207 170)> =

X —=[a(1)3(2) + B(1)a(2)] (72)

X —=[a(1)3(2) = B(1)a(2)] (73)

h) Four different spatial wave functions can be identified in the MO method:

1) for the ground singlet state lEg(oé) (symmetric function) (Eq. (74));
0. = 01('Se) = 4 (1) (2) = (24 2545) ™"
x{[a(1)¥(2) +9p(1)Ya(2)] + [Ya(1)a(2) +¥a(1)vs(2)]}  (74)
2) for the excited singlet state 1Eg(aﬁ) (symmetric function) (Eq. (75));
O_ = 0:('Se) = p_(1)p_(2) = (2= 2543) "'
X[ (D)Yp(2) + Pp(1)Ya(2)] = [a(1)va(2) + ¥p(1)ys(2)]}  (75)
3) for the triplet spin state 32u(aéalll (antisymmetric function) (Eq. (76));

0:C%y) = 04C%,) = 05(°%,) = \% [+ (1) (2) — 4 (2)p-(1)]

= 27122 4 28,45) 2 (2 = 2845) 2215 (1104 (2)
— Ya(1)y5(2)]
= —[2(1 = 835)] " Pla(1)s(2) — Yp(1)1a(2)] (76)

4) for the singlet state IEu(aéJ}l) (symmetric function) (Eq. (77)).

~—

Ol %) = 5 lex(1)e-(2) + 942 (1)
= 27122 4+ 28,5) 22 — 2845) " P2[0a (1)104(2)
— ¥5(1)¢¥5(2)]
= [2(1 = $3)] [ (1)9a(2) — va(1)¢5(2) (77)
1) Four different product functions can be created for the VB method
1) the two ‘““valence structures” (Eqgs. (78) and (79));
Qi = Pa(1)yp(2) (78)

Q= a(2)p(1) (79)



894 R. Boca and W. Linert

2) the two “‘ionic structures’ (Egs. (80) and (81)).

Q3 = Pa(1)ya(2) (80)
Q4 = Pp(1)5(2) (81)
j) Symmetry adapted VB-functions are given by Eqs. (82)—(85).
OYR('Sy) = [2(1 + 7)) (@1 + ) (82)
OYP(%y) = 2(1 - ) (@) — @) (83)
OYP('5) = 2(1 +57)) 12 (25 + Q) (84)
0P ('S) = [2(1 = )] 2 (25 — Qu) (85)

The relationship between the spatial functions in the MO and VB methods can
be easily proven by Egs. (86)—(89).

OYO('Sy) = 2(1+5)] ' [(Q1 + Q) + (2 + Q)] = Ni(6YP + 0)%)  (86)
OYO('S,) = [2(1 — )] ' [(Q1 + Q) — (2 + Q)] = N2(0)% — 03®) (87
OYO(CR,) = —[2(1 - s7)] 7 ?[Q) — @] = —6" (88)

OYO('s,) = 21 - )] 2 — @] = 6)" (89)

Now we can compare the spatial wave functions of the lEg symmetry according to
the VB method and the MO method: the MO method includes the “‘ionic struc-
tures” as well but with the same weight as the ‘“‘covalent structures’. Apparently
this overestimation of the ‘“ionic structures” is an intrinsic defect of the MO
method that is improved through the configuration interaction.

We have not considered the Hamiltonian so far. The above wave functions are
common for the hydrogen molecule and a joint helium atom with the exception of
the symmetry labels, since the hydrogen molecule spans the point group of sym-
metry D, whereas the helium atom belongs to the rotational group Rj.

Table 5. Molecular integrals in the Hy*, Hp, and H, " diatomics

Integral Symbol Expression
overlap s = Sap (ha(1) s (1)) .
one-center kinetic to = Taa (¢A(1)|T1|1/JA(1)> = (Yp(1)[T1[¢5(1))
kinetic t="Thp <¢A(1)|T1|¢B(1)> = (¢Ys(1 )|T1|1/)A( )
one-center Coulomb ap = Jaa <¢A(1)|VA1|¢A(1)> = (Y5 (1)|V31|¢B(1)>
one-electron Coulomb o= Jap (1/1A(1)|V31 (1)) = (¥5(1 )|VA1 [vp(1))
resonance B = Kap (@a(D)| Vg [9p(1)) = (p(1)[Vyy [10a(1))

= (La(D)|Vy, [(1)) = (p(1) |V [a(1))
two-electron Coulomb J = Jaass (1ha(1)pp(2 )‘V12|7/)A(1)¢B( )
one-center two-electron Coulomb — jo = Jaaua (Pa(1)pa(2 )\V12|1/1A(1)1/JA( )
two-electron exchange k = Kapap (Ya(1)yp(2 )\V12|¢A (2)ys(1))
two-electron hybrid h = Happsp (1ha ()5 (2)|Vio|¥op(2)¥p(1))

= (¥a(1)9ha(2)[Via|oa (2)¥5(1))
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Molecular Integrals

In treating the Ho™, H,, and H, ™ diatomics the same basis set will be considered: it
consists of two 1s atomic orbitals centered at A and B, respectively. These functions
are contained within expressions for molecular integrals. The full set is listed in Table
5. By using either polar or elliptic coordinates, all these integrals can be expressed as
functions of the orbital exponent a and the internuclear distance R (Table 6).

It can be seen from Fig. 3 that on increasing R all the integrals vanish, and:

a) the overlap integral decreases from the value of 1.0;
b) the kinetic integral decreases from the value of 0.5;

Table 6. Expressions for molecular integrals over 1s atomic orbitals

Integral Unit reduction Reduced integral®

Kinetic Tap = (B*/m.) T}y Tip = (a*/2)e *R(1 + aR — a°R*/3)
Resonance Kap = —(€*/4me0)K)p K,z = (1/R)e"*R(aR + a’R?*)
Coulomb Jap = — (€% /4meo) g Jyp = (1/R)[1 — e 2R(1 + aR)]
attraction

Overlap Sap = e ®(1 + aR + a’R?*/3)

2e-Coulomb  Jaapp = (62 /4me0)hapy  Jaups = (1/R){1 —e [l + (11/8)c
+(3/4)c* + (1/6)c3]}
2e-hybrid Happp = (2 /4me0)H)ypps  Hipps = (1/R){e [(5/16) + (1/8)c + ¢?]
—e((5/16) + (1/8)]}
2e-exchange  Kapap = (€2/4me0)Khpag  Kipaz = (1/R){e2[(5/8)c — (23/20)c?
—(3/5)c — (1/15)c*] + (6/5)[(Co + Inc)S?
—285.8_E_3c + S* .E_4]}
with S, = e (1 + x + x2/3), Euler constant
Co = 0.5772156649, integral exponential
function E_, = — [ (e~ /r)ds
2e-one-center  Jaaan = (62/4me0)huun  Jaaan = (5/8)a

a

¢ = aR; a — orbital exponent, R — internuclear distance

0.8
1.0

0.7
0.5 0.6
05

g
ur 2 04

o 0.0 £
0.3
-0.5 0.2
0.1
-1.0 I I I \ 0.0

0 1 2 3 4 5
R/a,

Fig. 3. Molecular integrals as functions of the internuclear distance R; the orbital exponent of 1s
functions is @ = 1.0; left: one-electron integrals; right: two-electron integrals



896 R. Boca and W. Linert

c) the Coulomb attraction integral increases from the value of —1.0;

d) the resonance integral behaves analogously but it increases more rapidly than
the Coulomb integral;

e) the two-electron integrals adopt the same value of (5/8) for R=0. On increas-
ing R, they vanish but with different rate: K psp more rapidly than Hsgpp and
this one more rapidly than J44p5. Above R =4a, the two-center Coulomb inte-
gral behaves practically the same as the 1/R function.

The Chemical Bond in Dihydrogen Cation by the MO Method

The molecular ion H,* is the simplest system bound by the chemical bond.
Constituents of the H,™ are two nuclei (protons A and B) and a single electron
(abbreviated as 1).

The complete molecular Hamiltonian is given by Eq. (90).
H=T+V=|Fa+ Tl +Ti+Var + Vi + Vag (90)

Within the Born—-Oppenheimer approximation the kinetic energy of the nuclei T,
and T is omitted.
The number of electron configurations is given by Eq. (91).

" spinorbitals _ 4 _4 1)
electrons 1
The trial wave function will be represented by a single molecular spinorbital
(Eq. (92)).
®i(1) = ¢1(1) = i (Na(l) (92)

The two molecular orbitals are expressed in the form of a linear combination of
atomic orbitals (Is functions centered at A and B) (Eq. (93)).

Y+ = caa £ cpp (93)

The normalization constant is determined as follows (Eq. (94)) so that we have
Eq. (95).

(ps |+ ) = N2 (1ha £ bptba £ 1bp) = N2 (2£2(0halthy)) = 1 (94)

Ny = (24+2845) "2 (95)
The atomic orbitals have been normalized (Eq. (96)).
Saa = Sgg =1 (96)

Normally, the combination coefficients should be determined by the linear
variation method, i.e. by solving Eq. (97) where the overlap integrals are given
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by Eq. (98) and the matrix elements of the Hamiltonian are described by

Eq. (99).
(HAA — ESpan Hpp — ESAB> (CA> —0 (97)
Hsp — ESyp Hpp — ESpp ) \ cp
Sas = (Yalp) (98)
Hag = (1a|H|os) (99)
However, owing to the symmetry, the coefficients are equivalent, |c4| = |cg|, sO

that the two solutions can be written as shown by Eq. (100).

pir =Ny (Patp) = (2£2845) "> (a £ p) (100)

Since the wave function is known, the mean value of the molecular energy can be
evaluated as given by Eq. (101).

Ey =(ps|Hlps) - {a(D)|a(l)) =N (Ya £ ¢p|T1 + Var + Va1 + Vagltoa £ ¥p)
= N (alT1[va) + (5| T2 [105) £ 2(a|T1405) + (a|Var [¢ha)
+ (V8| Varlvhg) £ 2(tpa|Var [405)
+ (Val Vi1 |va) + (V8| Va1 |15) £ 2(a| Ve [18) + (¥al Vasltia)
+ (V8| Vaslts) £ 2(va| Vagltis)) (101)

Here we are left with a set of molecular integrals composed of atomic orbitals.
Using a simplified notation for molecular integrals (Table 5), the mean value of the
molecular energy for H,™ becomes Eq. (102) and making use of the normalization
constant we obtain the following energy expression (Eq. (103)).

Ey =2N% [(to£1+ g+ a£28) + Vap(1 £5)] (102)

Ei:VAB—{-(I():I:[—}—O(()—{—OAﬂ:Zﬂ)/(l:I:S) (103)

When the atomic orbitals in use are eigenfunctions of the hydrogen atom, then the
energy of the free hydrogen atoms is given by Eq. (104) and furthermore Eq. (105)
holds true.

to+ g = (ha|Ty + Vi [1ba) = Eo(thultha) = Eo (104)
t+ 3= (YalT\ + Vii|vs) = Eo(valvs) = Eos (105)
Using these assumptions the molecular energy can be simplified to Eq. (106).
atpg
EL =FE 1
+ 0+VAB+1iS (106)

However, this simplified relationship is not generally valid.

In atomic units, Ey/E, = —1/2 has a constant value and Vap/E, = 1/R (the
internuclear repulsion) is always positive. The remaining integrals are smooth func-
tions of the internuclear distance and the orbital exponent (a) of the basis set 1s
functions (Table 6).
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Fig. 4. Energy of the H, " ion by the MO method,; left: dashed — for orbital exponent a = 1.0; solid —
a optimized for each R; right: energy terms using a optimized for each R

On lowering R the molecular energy abbreviated as £, passes through a mini-
mum, which means that a stabilization (binding) energy E} (relative to the energy
of the hydrogen atom Ej) is liberated. This amount should be comparable with the
experimental determination of the dissociation energy D.. The position of the
energy minimum corresponds to an equilibrium distance Ry (Fig. 4). On the con-
trary, the second solution E_ is always increasing which indicates that no chemical
bond is formed in this molecular state. The difference between the energies E
lies in the sign of the resonance and overlap integrals.

Using the orbital exponent ¢ = 1.0 the calculated molecular energy is E, /E,, =
—0.565 at Ry/ay = 2.495. These values are much improved when the orbital expo-
nent is subjected to variation (Table 7): the final energy value is not too far from the
experimentally determined value.

The optimum orbital exponent a, secures not only lowering of the energy but
also satisfaction of the virial theorem. The individual energy terms behave with
varying R as shown in Fig. 4. The optimization of the orbital exponent should be
done individually for each internuclear distance. The virial ratio v = —2 is ob-
tained only at the equilibrium distance Ry when the energy gradient vanishes.

Frequently it is claimed that the chemical bond appears as a result of occur-
rence of the resonance integral. Such an understanding, however, is mistaken. The
physical nature of the chemical bond is given by the virial theorem: an increase in
the kinetic energy accompanied by a decrease of the potential energy. The appear-

Table 7. Calculated bonding characteristics for Hp ™

Method E,/E, Ro/ag (T) (V) (V)/(T)
a=1.0 —0.56483 2.495 0.38271 —0.94753 —2.47592
a=1.238 —0.58651 2.003 0.58648 —1.17299 —2.00005

Experiment —0.60263
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ance of the resonance integral originates in the molecular orbital approach and thus
it should be considered as a descriptive parameter only. If a more rigorous ap-
proach is applied the resonance integral can disappear completely but the chemical
bond exists irrespective of appearance of resonance integrals.

The MO Method for the Dihydrogen Molecule

The molecule H, contains two nuclei (protons A and B) and two electrons (1 and 2).

The complete molecular Hamiltonian is given by Eq. (107).

H=T+V= AA+%\+T1+T2+VA1+VBI+VA2+V32+V12+VAB
(107)

Within the Born-Oppenheimer approximation the kinetic energy of the nuclei T,
and T is omitted. The Hamiltonian for the H, molecule, which is a two-electron
system, can be rewritten as Eq. (108).

H=Vag+2(T1 4+ Va1 + V) + Vi = ho + (1) + h(2) + &(1,2)  (108)

The two-electron antisymmetrized wave function is constructed in the form of a
spatial part ©(1,2) and a spin part (S, My) as explained above (Eq. (109)).

Y(1,2) = O(1,2) - n(S, M) (109)

The total molecular wave function is antisymmetric with respect to interchange of

the two electrons.
The molecular energy will be evaluated under four different approximations:

a) within the MO (Molecular Orbital) method,

b) by the CI (Configuration Interaction) applied after the MO method;

c¢) according to the limited VB (Valence Bond) method that considers only the
“valence structures’’;

d) according to the complete VB method that includes also the ““ionic structures™.

The MO Method

The construction of the wave function in the MO method follows the following
procedure:

a) In the basis set of 1s atomic orbitals two molecular orbitals can be constructed
via LCAO (Eq. (110)).

(i) = (2£2845) Pl (i) £ ()] (110)
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b) By adding the spin functions, the MOs form four molecular spinorbitals:
b1 =94, G2 =0, ¢3=¢_, and ¢4 = ¢_. Their different occupation by
two electrons defines six electron configurations.

c) Each electron configuration is characterized by a Slater determinant so
that one can construct six determinantal wave functions @; through @g
(A single Slater determinant guarantees that this is an eigenfunction of
the projections of the orbital and spin angular momenta operators; however,
this is not an eigenfunction of the total angular momentum operators, in
general).

d) The true state vectors |S, M), which are the eigenfunctions of the spin operators

5’2 and S‘Z, are given by the eventual linear combinations of Slater determinants
(In fact only the two last determinantal functions need to be linearly combined
to yield the proper molecular-state wave functions).

There are only four distinguishable spatial wave functions in these formulae,
namely:

1. for the ground singlet state 'S, (02), @, = 0('Sy) = ¢4 (1), (2) which is a
symmetric function;

2. for the excited singlet state '%,(02), @ = 0,('Sy) = _(1)¢_(2) which is a
symmetric function also;

3. for the triplet spin state >, (0307), 03(%0) = [ps(Dp-(2) — ¢4 (2)p_(1)]/V2
which is an antisymmetric function common for the spin multiplet @3(3Zu) =
@4(32u) = @5(32u);

4. for the singlet state 'Y,(0y0,), O6('Z0) = [pr (- (2) + ¢4 (2)p_(1)]/V2
which is a symmetric function.

The feature that the spatial part of the ground-state wave function in the MO
method is a combination of the “valence structures” and ‘“‘ionic structures’ with
equal weights will be identified later as the main drawback of the simple MO
method.

The mean value of the molecular energy for the states lZg is described by
Eq. (111).

Ey (1Eg> = <Y’i!1:1\ﬂ”i> =A<@i\f1!@i><n!n>
= (p+ (e (2)[H|pL(1)p+(2)) (111)

The evaluation in this form is rather tedious since there are 4 (wave function
terms) x 8 (Hamiltonian components) x 4 (wave function terms) = 128 terms con-
tributing to the molecular energy. A more transparent derivation is obtained when
the Slater rules for matrix elements are applied. According to the first Slater rule E

is given by Eq. (112).
E=ho+ Y hi+ Y Y (Jj—Ky) (112)

i j<i

For the ground-state antisymmetrized wave function (a Slater determinant) the
Hamiltonian matrix element, according to the first Slater rule, is described by
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Eq. (113) which is rewritten as Eq. (114).

Ei('Se) = (WLH'W1) = ho + (o ()A(1)] o (1)) + {04 (2)|2(2) 0+ (2))
+ (e (D (2)8(1,2) [+ (D1 (2))(a()|a(1)){(B(2)|5(2))
— (o4 (1)1 (2)18(1,2) 0+ (2)4 (1)) {aIHBT) ) {2 2HB(2))

(113)

EL("Sy) = ho+ hii + hoy + J 12 (114)

Here, in addition to one-electron integrals the Coulomb integrals over MOs
appear. The exchange integral between MOs disappears, Ki;= 0, owing to the
orthogonality of the spin functions. The one-electron terms are specified as shown
by Eq. (115).
hiy = hyp = NiWA(l) +p()|T1 + Var + Ve [¢a(1) + ¢p(1))

= N2[(Taa + 2Tap + Tpg) + (Jaa + 2Kag + Jap) + (Jap + 2Kap + Jps))]

= [2t0 + 2t + 200 + 200 + 4]/ (2 £ 25) (115)
The Coulomb integral over MOs is expanded as given by Eq. (116) and finally J;,
is described by Eq. (117).
Ji2 = NE([wa (1) +p(D][va(2) + vp@)Vial[a (1) + vu(1)][44(2) +¥5(2)])

= N7 [Jaaaa + Haaap + Hanan + Kapap + Hasap + Jaass + Kapap + Haaap

+ Hpaap + Kapa + Jaass + Haaag + Kapas + Hanag + Haaas + Jaaaa)

= (Jaana + Jaasp + 2Kapap + 4Hapap)/[2(1 + SAB)Z] (116)

Ji2 = (o +Jj + 2k +4h) /[2(1 + s%)] (117)

In these formulae the two-electron integrals over the basis-set atomic orbitals
occur. The normalization constant was already evaluated as N. = (2 +2S45)" 12,
Then, using a 51mphﬁed notation, the total molecular energies for the two
singlet spin states, Ei( ¥,), become expressed as Eq. (118).
to+ o £ (t+ ) atfB jo+j+2k=E4h
Ei('Sy) = Vap +2 2 118
+(12) AB T T4 + 1is+ 2(1j:s)2 (118)

Making use of the identities Eqgs. (119) and (120), fulfilled for the 1s orbitals (with
a=1) as eigenfunctions of the hydrogen atom, we get a simplification for this
particular case (Eq. (121)).

to+ o= (Pa(1)|T1 + Varlea(1)) = Eo (119)
t4 3= (pa(1)|T1 + Vpi|1hp(1)) = Eos (120)

atfB jo+j+2k+4n
+ 2
1+s 2(1+35)

EL('S,) =2Ey + Vap +2 (121)
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Table 8. Expressions for the integrals over the molecular spinorbitals®

One-electron integrals Two-electron integrals

hggzhll=h22=[Zo+0¢0+0¢+(f—|—25)]/(1+5> ]gg—.llz—[‘]()—l—j—l—zk—l—élh}/[ (1+S)2}

huu:]’l33:h44:[t0+0£()+047(l‘+2ﬁ)]/(1*5‘) Juu—134—[j()+j+2k 4h}/[ (I*SZ}
Jgu—Jl3—123—[Io+j—2k]/[2(1—v2)]
Ko = Ki3 = [jo —Jj]/[2(1 = 5%)]

? The spinorbitals are labeled according to ¢; = ¢y, ¢ = @4, 3 =@, G4 = p_

The one-electron and two-electron integrals over the molecular spinorbitals are
collected in Table 8. They allow evaluation of the energy of the triplet state,
(Eq. (122)), hence yielding Eq. (123).

Es(°S) = (¥5|H| W) = (@3]H|®s)

=ho+ hi1 + h3z +J13 — Kiz =ho + hgg + hyy + Jou — Koy (122)

h+a+(t+05) a+p th+ta—(t+0) a—p
2 +
1+s 1+s 1—s 1—s 1—342
(123)

Es(’Sy) = Vag +

Now it is evident that eventual stabilization of the electronic state involves no
two-electron exchange integrals as often claimed erroneously. For the singlet states
the hybrid integral has opposite sign and this integral disappears in the triplet
spin state.

The energy of the remaining singlet state is given through the combination of
Slater determinants (Eq. (124)) and after the application of the Slater rules it
becomes expressed over the molecular spinorbitals as Eq. (125) which simplifies
to Eq. (126).

Eo('20) = (Pl H|We) = 5 [(s — bl | — )]

[(Ds|H|Ds) + (6|H| D) — 2(Ds|H|Ds)] (124)

(¥
1
T2

Eé(lEu) = % [(h() + h22 + h33 + J23) + (ho + h]l + h44 + J14)
— 2((23[2]14) (BIA) (AB) — (23[8[41)(BI8)aler))]  (125)

Eo("24) = ho + heg + huu + Jgu + Keu (126)
The expansion into the basis set of the atomic orbitals yields finally Eq. (127).

If + (7 + 1 —(t — jo — k
0+ ap (+ﬁ)+a 5+0+a0 (+ﬁ)+04 5+J0
1+s 1+s 1—=s 1—s 1—52

(127)

Es('Sy) = Vap +
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Fig. 5. Energy of the lowest molecular states by the simple MO method; orbital exponent a = 1.0; an
asterisk indicates an improper limiting behaviour; right: energy of the molecular 'Y, states by the
MO + CI method; orbital exponent a = 1.0; dashed — simple MO, solid — MO + CI

Table 9. Calculated bonding characteristics for H, molecule by the MO method

Method E()/Eh Ro/ao <V>/<T>
1. MO a=10 —1.09908 1.602 —2.37954
Aopy =1.193 —1.12823 1.385 —1.99674
2. MO +CI a=1.0 —1.11865 1.670
Aopr =1.194 —1.14794 1.430
3. Experimental —1.17447 1.401

Having the molecular integrals at our disposal makes the plot of the molecular
energy possible (Fig. 5). The calculated bonding characteristics are collected in
Table 9. In can be seen that although the MO wave functions describe the chemical
bond qualitatively well, they behave incorrectly at the dissociation limit (Eq. (128)),
i.e., the energy of separated atoms is erroneously higher by jo/2 = (5/16)a in
units of Ej,.

lim E, ('%,) = 2Eo +jo/2 (128)

R—o0

Configuration Interaction

The configuration interaction (CI method) mixes the Slater determinants of the same
symmetry. In the minimum basis set of 1s functions we have two electron config-
urations, 10g2 and 10,2, of the same symmetry lZg. A more flexible wave function is
a linear combination of the corresponding Slater determinants (Eq. (129)).

P(1,2) = 'Y+ ¢, MO (129)
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Application of the variation method implies the fulfillment of the secular Eq. (130)

Hy —E  Hp— ESp
det =0 130
<H12—E512 Hy —E > (130)

Since the respective Slater determinants are orthogonal, S;, = 0 holds true. Thus an
explicit solution of the quadratic Eq. (131) exists (Eq. (132)).

(Hiy —E)(Hy —E)—H, =0 (131)

Ea,b = (Hll +H22)/2:|:{[(H11 — sz)/Z]z +H2 1/2 (132)

The diagonal matrix elements of the Hamiltonian are H,; ='E, and H»,='E_. In
evaluating the off-diagonal matrix element Hi, the Slater rules are helpful. Since
the two Slater determinants differ in two pairs of spin-orbitals, the one-electron
term vanishes and the only non-zero contribution is given by the electron repulsion
(Eq. (133)) which becomes Eq. (134).
Hiy = (WL H'P-) = (04 ()9 (2)[Vialo-(1)e-(2))
= NIN2(Wa(1)vs(2) + p(1)1a(2) + a(1)1a (2)
+ p(1)3 3(2)|V12|¢A( )¥5(2)
+ 1p(1)9a(2) — Ya(1)9a(2) — 5(1)¢5(2)) (133)

Hyp = [2(1 +5)2(1 —5)]"
X[j+k+h+htk+j+h+h—(h+h+jot+k+h+h+k+j)
= (j —jo)/12(1 = 8*)] (134)

In the limit of infinite internuclear distance we obtain Eq. (135) and the roots of the
secular equation are shown by Eq. (136).

Aim Hip = —jo/2 (135)
ESL(R — 00) = (2Eo +jo/2) % |jo/2] (136)

The lower energy solution is given by Eq. (137) whereas the higher energy solution
is described by Eq. (138) and now they behave correctly in the limit of infinite
internuclear separation. As a correct limiting behaviour of the energy on the dis-
sociation is obtained, the configuration interaction removes the intrinsic defects of
the MO method (of the one-electron approximation).

ESY(R — o0) = 2E, (137)

E;'(R — 00) = 2Ey + jo (138)

The quantitative results obtained by the MO + CI method are involved in Table 9
and visualized in Fig. 5. The molecular states E(*X,) and E('%,) are unaffected by
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Table 10. Survey of the MO formulae for the H, molecule

Molecular orbitals (LCAO) (i) =2+ 2s)71/2 [¢a (i) + Y5 (i)]
puli) = (2= 25) (i) — (D)

Energies in terms of MO E\ = Vag + 2hge + Jop
and AO integrals _2t0+a0+(t+6) 2a+ﬂ Jo+Jj+2k+4h
E('Zy) 1+ 1+ 2(1 4 5)?

Ey = Vag + 2hyy + Ju
th+ag— (t+0) a—pB  jo+j+2k—4h
—2 1227
(¢ E('Zy) 1—s 1—s 2(1 —5)?

1 E5 :VAB+hgg +huu +Jgu_Kgu
thta+t+hB a+fB to+a—(t+5)
141 Eq('Z) EA'Z) - 1+s 1+s 1—3s
(4'4,)) o E |
+a -0 j—k
4 I—s (1451 -y
E¢ = Vap + hgg + My +]gu +Kgu
(4,'8.)  E,(Z) E(3z) Chtag+t+ B a+ B ty+ag— (t+[)
T ] h 1+ l1+s 1—s
a—p Jo—k
~/(MO) R +(1+s)(1—s)
()" | Ex('Zy) ~J(CD)
Ea(1Zg)
Interaction matrix elements H; = (0i|H|0)); Hiz = Ky = 0T g, =0

2(1 — %)

the CI method since they have no symmetry-matching counterpart within the mini-
mum basis set of the 1s functions.
The survey of the MO formulae is presented in Table 10.

Amplitudes of Molecular Orbitals

The molecular orbitals are completely known in the form of Eq. (139).

(i) = (2%2845) " [a i) £ ()] (139)
The 1s functions being described by Eqgs. (140) and (141) and the overlap integral
is a function of ¢ = aRsp, namely Sy = e (1 + ¢ + ¢?/3).

a(i) = (@ /) e (140)

V(i) = (@ /) /7 (141)

This information is sufficient in constructing and visualisation of the ampli-
tudes of molecular orbitals.

Since the whole molecule has a cylindrical shape the problem can be visualized

in cylindrical coordinates (Fig. 6). These are defined by three variables: the radius
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ANTA
VRV

Fig. 6. Definition of the cylindrical coordinates

u = /x*+y? varies from u = 0 to oo; the angle of rotation ¢ = 0 to 2m; the
height of the cylinder ranges between z = —oo and +oc. The volume element is
dV = ududzd¢. The usual normalization in spherical coordinates yields Eq. (142)
where the factor 47 arises from integration over the polar angles ¥/; and ¢;. Now
the following normalization holds true in cylindrical coordinates (Eq. (143)) where
the factor 27 results from integration over the remaining coordinate ¢;.

1= JV[@ZJA(rl,ﬂ],gb])]de = (a3/7r)(47T)J B} exp(—2ar1)r12 dr; =1 (142)

1= (@ /) 2n) Jm Jw exp{—2ali + (z1 — 24)]"} induy dzy = 1

z1=—00 Ju;=0

(143)

The cylindrical coordinates are probably not suitable for analytic integration.
However, a numerical integration in cylindrical coordinates causes no problem.
One should define a dense network of grids: the coordinate z ranges from —rpyax
to +7rmax by a small step Az; the coordinate u varies from O to +rp.x by a step Au.
The semi-integral of the function F(u,z) can be integrated as a sum multiplied by
the step (Eq. (144)) and the full integral becomes Eq. (145).

o0 27 +Fmax

F(z) = J OF(u,z) udu JO do = (2m)(du) - > Flu;, 3) u; (144)
u= u;=0
F = J+oc F(z)dz = (4z) - Jin: F(z) (145)

The molecular orbitals are the one-electron wave functions (common for
H,", H,, and H, ™ systems), which can be displayed along the z-coordinate pass-
ing through the atomic nuclei A-B. We need to set the internuclear distance (say
Rap = 1.4ap) and the radius of the plot ry.x. Then the center of the molecule is
set to zero, the position of the first center is at z4 = —Rsp/2 and that of the
second center at zzg = +Rsp/2. The electron coordinate z; ranges from —ryax
to +7"max-

In the cylindrical coordinate system the atomic orbitals become expressed as
shown by Egs. (146) and (147).

s = (@ /m)' P exp{—alu} + (z1 — z4)"]'*} (146)

g = (@ /m)" exp{—alif + (21 — 25)"]"*} (147)
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Fig. 7. Amplidutes of atomic Is orbitals (left) and molecular orbitals (right) in H, molecule along
the internuclear linkage (# =0, ¢ — arbitrary)

The addition and/or subtraction of atomic orbitals along with the proper normal-
ization constant Ny reveals the amplitudes of molecular orbitals (Eq. (148)).

pi(z1) = [a(zr) £ vp(2)INe = [¥ale1) £ p(z1)] (2 £ 28548) (148)

The amplitudes of molecular orbitals are visualized in Fig. 7. It can be seen that
the bonding molecular orbital possesses an amplitude increase in the internuclear
region. Unlikely, the antibonding molecular orbital alters the sign just in the center
of the molecule where its amplitude vanishes.

The true difference between MOs of H,™, H,, and H, ™ systems appears as an
effect of different orbital exponent (the scaling factor) a, and a different equilib-
rium internuclear distance R4p in these systems.

The probability of finding the electron in the volume element dV; is given by
Eq. (149).

Pi=los (x,y1,20)[ dVi = |+ (z1, 11, 1) [* urduy dz; depy (149)
In generating the probability functions for the MOs we have Eq. (150).
Py(ur,z1,¢1) = |wi(u1,11,¢1)|2 dVy = N2 [a(ur,z1,61) i”ZDB(Ml,Zl,le)]Z dv,
(150)

Let us introduce the atomic charge density (Eq. (151)) which can be semi-integrated
along the coordinate ¢; to give Eq. (152) as well as along the coordinate u; to yield
Eq. (153) or fully integrated to give Eq. (154).

PMuy,z1,¢1) = [a(ur, 21, 1)) urduy dzy dey
= (d®/7) exp{—2a[i? + (z1 — z4)"]"/*} udu; dz; dob, (151)

PPz, u1) = (a®)7)(27) exp{—2a[i + (z1 — z4)*]"*} urduy dzy (152)
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P =@ men) | [ ew(-2alid + - 20 Y ndifaa (153
P — J+OO ch(zl) dz; =1 (154)

Analogous expressions hold true for P (ui,z1, ¢1), P9 (ur,21), P(z1), and
Pt = 1. The overlap density is introduced as shown by Eq. (155) and it is semi-
integrated to yield Eqs. (156) and (157).

Pip(ur,z1, 1) = Ya(ur, 21, ¢1)p(ur, 21, ¢1) uyduy dzy dey (155)
P3y(ur,21) = (/) (2m) exp{—alu + (21 — 24)"]*}
x exp{—alu} + (z; — 23)2]1/2} u duy dz; (156)
Py(a) = @men)| [ ewloalit + - 2
X exp{—a[u? + (21 — ZB>2]1/2} urduy | dz; (157)

The complete integral done numerically should converge to the value of the
overlap integral (Eq. (158)).

+00

e e LR (158)
21=—00

The charge density and the overlap density functions are plotted in Fig. 8.

It can be seen that the charge density P$'(zy,u;) exhibits a maximum at the
position of the atomic nucleus (z; = —R/2) and 1 bohr apart from the nucleus
(u/ap = 1.0). The charge density at the nucleus is exactly zero: P{(z;= —R/2,
u; = 0) = 0. This quantity matches the monoatomic density function when placed
at the position {z;= —R/2,u; = 0,¢; = 0}. A similar property exhibits the second
charge density P$"(zy,u1). The overlap density is a constant in the internuclear
region and escapes progressively outside the nuclei.

04l 1 Pl 0.4 R 04

03 031 A 037
= z H : e =
] 5 =
S 3 S
g 02 ‘_3; g 02
o = o
< o <
= > =
O & O

\
3 0.1

N

“‘\:‘: S09SS
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0555
0,20,
lll:,,g,z'

011

)
SRS

&5
0574

4 /i
“|

Fig. 8. The charge and overlap densities, Pj;h(zl ,ur), P3p(z1,u1), and Pgh (z1,u1), in the Hy molecule
semi-integrated over the angle ¢,
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Probability P,
Probability P

Fig. 9. The MO probability functions, P, (z;,u;) and P_(z;,u;), in the H, molecule semi-integrated
over the angle ¢,

The MO probability functions can be rewritten into the semi-integrated form
(Eq. (159)) and they are displayed in Fig. 9. Analogously, Eq. (160) is obtained.

Py(z1,m) = [P(z1,m1) + Py (21, ur) = PRy (21, )] /[2(1 £ Syp)] (159)
Pi(z1) = [P3(21) + P (21) £ Pig(z1)]/[2(1 £ Sap)] (160)
0.55 — 0.55
0.50 - 0.50 |-
oas | P@\ N Puz) 045 |-
- 0.40 |- / \ s 0.40 |- P (z)
£ 035+ = 035
D 030 § 0.30 [ /
S 0251 o\ Pael2) S 025 \P‘(z1)
Q o020 / \ Q 020 / \ / \
0.15 - ; - 0.15 - : :
0.10 - : / \ 0.10 - / \ / \
0.05 - AR L 0.05 |t fe
0.00 —— / ‘ ‘ ‘ - \ 0.00 I I \J i ]
4 3 2 1 0 1 2 3 4 4 3 2 1 0 1 2 3 4
z/a, z /a,

Fig. 10. Semi-integrated atomic and molecular probability functions; left — atomic orbital prob-

abilities for two isolated H atoms placed at the positions =+ 0.7a (area under the solid and dashed

functions equals to 1.0); the overlap probability function — dotted; right — molecular orbital

probabilities for H, molecule with internuclear separation 1.4ap; solid — for bonding MO,
dashed — for antibonding MO
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The individual monoatomic components P$'(z1), P§'(z1), and the diatomic P$%(z;)
component are shown in Fig. 10 — left. The MO probability functions P (z;) are
displayed in Fig. 10 — right.

Amplitudes of State Functions

The molecular state (wave) functions in the H, molecule depend upon the coordi-
nates of two electrons, so that we need to map the two-dimensional functions
O(r1,ry). Let us recapitulate the expressions for the spatial parts of the molecular
wave functions (state functions) (Egs. (161)—(164)).

O1{'Sa(03)} = @1 (r)ps (r2) (161)

02{'Sa(00)} = - (r)e-(r2) (162)

O3’ Su(olol)} = o1 (r)e-(r2) — o1 (m)p-(r)]/ V2 (163)
Os{'Su(atolsolod)} = [pi(n)e-(r2) + @i (r)e-(r)]/V2 (164)

Using the results of the previous paragraph we can start mapping these functions in
one dimension, ©(z;,z, = z;1). This is permitted for electrons having opposite spin
(electron correlation is not included in the MO method). The results are visualized
in Fig. 11.

It can be seen that the ground state lEg(Jz), in which two electrons of an
opposite spin occupy the bonding molecular orbital, is bonding in nature: there
exists a concentration of electron charge density in the internuclear region. The
excited state lEg(aﬁ), in which two electrons occupy the antibonding MO, is
antibonding at the internuclear distance of Ryp = 1.4ay. Analogously, the excited

state 'Y, (oloy; olo}) is antibonding; the subscript u means that the wave function

is an odd function of space coordinates and thus alters its sign at the center of

Amplitude

-0.1 +

-0.2 +

-0.3 +

0.4 I I I I I
z,/a,
Fig. 11. The amplitude of the wave function for H, along the coordinate z; =z, (u = ¢ = 0):

solid — lEg(aé); dashed — '%,(02); dotted — IEU(U;U}I; alag,); zero — %,
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the molecule. The last wave function %, (c}o]) vanishes exactly along the path
O(z1,22 = z1) in accordance with the Pauli principle: the occurrence of two elec-
trons having the same spin at the same point in space is not allowed.

Changing to a three-dimensional graphic brings more information about the
properties of the molecular wave functions. The wave functions are mapped as
O(z1,22) for uy = up = ¢, = ¢, = 0 and displayed in Fig. 12.

The wave function of the ground state lZg(Jé) is symmetric with respect to the
interchange of coordinates of electrons: ©(z1,22) = @1(z2,21). Its cross-section

spatial function ©,{'Z, (c})}; spatial function ©,{°%, (cla!)};
symmetric, as 0,(1,2) =+6,(2,1); antisymmetric, as 0;(1,2) =-0,(2,1);
non-correlated (the maximum occurs at z; = z,) correlated (the maximum occurs at z; # z,)

ooy, 1 s 0 2
Cf/'o '1 ‘0(\
7773 3 -2 e\ec’\
spatial function ©,{'Z, (7)) spatial function @G{IZu(oioI;cgai)};
symmetric, as 0,(1,2) =+06,(2,1); symmetric, as 0,(1,2) =+6,(2,1);

non-correlated (the maximum occurs at z; = z,) non-correlated (the maximum occurs at z;, = z,)

Fig. 12. Amplitudes of the wave functions for H, along the z-coordinates of two electrons according
to the MO method
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for z; = zo 1s identical with the function displayed in Fig. 11. The required anti-
symmetry of the total molecular wave function is provided by its spin part. The
same symmetry properties exhibit the remaining spatial wave functions for the
singlet states. On the contrary, the spatial wave function for the triplet state is
antisymmetric with respect to the electron coordinate: @3(z1,22) = —O3(z2,21).
The corresponding spin function is symmetric.

The MO Method for the Dihydrogen Anion

The molecular ion H,™ contains two nuclei (A and B) and three electrons (1 to 3).
Its Hamiltonian is written as follows (Eq. (165)).

—ho+h +hy+hs+Via+Vis+ Vo (165)

The number of electron configurations is given by the formula n = (g) = 4. The
three-electron wave function is constructed in the form of a Slater determinant
containing three occupied molecular spinorbitals (Eq. (166)) where only two molec-

ular orbitals, ¢ and ¢, are involved.

¥1(1,2,3) = A{pi(Da(l) - 1(2)5(2) - 2(3)a(3)} (166)

These are constructed via LCAO of a pair of 1s basis set functions and they
have the symmetry o, and o, respectively (Egs. (167) and (168)).

01(0g) = Ni (4 + ) = (2 +28a5) (¢4 + ¥) (167)

02(0) = Na(tba — ) = (2 — 28a5) (04 — ¥) (168)

The symmetry of the ground-state wave function ¥, is 23, and for the excited-

state wave function ¥, it is zEg (see Fig. 13). Each wave function is (spin) doubly

degenerate. The symmetry of the ground-state wave function follows from the

direct products of the irreducible representations of the molecular spinorbitals

contained in the electron configuration o0 ® o ® o = 3. For the ground state there
2 1

is 0,0, and therefore g ® g ® u = u. The electron configuration of the first excited

state is O';O'ﬁ and thus g®u®u=g.

€ A A
Ou — ; | { ? #
o, H ; §
2y, 2y, 2%, 23,

Fig. 13. Four electron configurations of the H, ™ system
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The Slater rules can be used for the expression of the total molecular energy

(Eq. (169)) where 7; is the spin function (« or (3) for the i-th molecular orbital ;.

Using this formula the energy of the electron configuration olo? is given by

Eq. (170) and for the electron configuration ooy by Eq. (171).

E= hO + Z 901 |h1|(p, + ZZ (Pz (pj |g12|901< ) (2)>

i=1 j>i

—(pi(Dp;(2 )Iglzlsoi(Z) (1)) (i (1) [m; (1)) {mi (1) [m;(1))]
—h0+2h,, +ZZ("U Kijbsis) (169)

=1 j<i

E(°Sy) = ho + b1 + hyy + hys + J12 — Ki {045} {o4)
+J13 — Kiz{ala)(ala) +Ja — K23WW

:h0+2h]1+h33 +]12+2J13—K13 (170)

Ex(*S) = ho + i1 + hs + has + J13 — Kiz(ala)(ala)

+J1s — K14WW> + 34 — K34WW

=ho+ hi1 +2h33 +2J13 — K3 + J3 (171)

The one-electron and the relevant two-electron integrals among molecular or-
bitals we already met in the problem of the H, molecule. Thus the final energy
formulae become Egs. (172) and (173)

El(zzu):VAB
1 t 1 — (f —
+20+O¢0+( +5)+2a+5+ 0+ ao— ( +ﬁ)+04 B
1+s 1+s 1—ys 1—s
1 | + 2k + 4h j | — 2k o — J
+J0+J+ sz Jo+J B Jo—1J (172)
21 +5) 21 +9)(1—3) 201+ )
-0.5
-0.6,
-0.7,
££
m
0.8 |
0.9 F
1.0 i i i i
0 1 2 3 4 5

Fig. 14. Energy of lowest states for Hy~ by the MO method



914 R. Boca and W. Linert

Table 11. Calculated bonding characteristics for H, ™ ion by the MO method

Method E()/Eh Ro/ao <V>/<T>
MO a=1.0 —0.91760 3.365 —1.62088
aopt =0.796 —0.97411 3.472 —1.99985

E)(*Sy) = Vap

1 t I — (f —
o+a0+(+ﬁ)+a+ﬁ+2o+&o (+5)+204 Y]
1+s 1+s 1—ys 1—ys
2(1 — )2 21 +s)(L=s) 2(1+s)(1—ys)

The plot of energies E; and E, as functions of the internuclear distance is shown in
Fig. 14 and the calculated equilibrium data are listed in Table 11.

The VB Method for the Dihydrogen Molecule

Limited VB Method

Within the valence bond method the spatial part of the electronic wave function is
approximated by the linear combination of two product functions (Eq. (174))
where each of them is represented by a ‘““covalent structure’” describing the ground
state of the hydrogen atom (Egs. (175) and (176)).

0(1,2) = C1Q, + C:Q, (174)
Q= a(1)p(2) (175)
Qy = a(2)p(1) (176)

The coefficients C; and C, can be determined by the linear variation method.
However, the product function @, and @, should be equivalent (as an effect of
the symmetry) and thus |C;| = |C;| holds true. For the spatial part of the VB
functions Eqs. (177) and (178) can be directly written where the overlap integral
of atomic orbitals is Sap = (14(1)|1pp(1)). The normalization constant is to be
determined from (@4 |@. ) = 1 yielding N» = [2(1 j:SiB)]_l/z.

0, = 0,('Sy) = N (@ + @) = 21+ ) @+ ) (177)

O_=0,0%,) =N_(Q — Q) = [2(1 — $2)] 2@ — Qy) (178)
The mean value of the total energy is given by Eq. (179).
Ex= (Vi |H|V:) = (04 |HOL) (nln) = 2(1 £83,)] 7 (@1 + Q|H|2) + D)
=21 £83p)] [(Qi[HIQ)) + (2|H|Q2) £2(Qi|H|2)]
= (1£835) " [(a(D)es(2)|HIYa(1)95(2)) £ (a5 (2)|H|$a(2)15(1))]
(179)
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Using the explicit form of the Hamiltonian we have Eq. (180) and these 16 terms
are rewritten as shown by Eq. (181).

Ei=(1 iS/Z;B)_I[<¢A(1)¢B(2)|T1 + T+ VA + Vo + Ve + Ve + Vi
+‘7AB|1/1A(1)¢B(2)>

+ (Wa(D)Yp(2)| Ty +To+ Var + Var + Vi + Vo + Via + Vaglta (2)s(1))]
(180)

E.= (1% wa)_l [T4aSes + TppSan + JaaSes + JapSaa + JapSes + JppSaa
+ Janss + VanSaaSss + (2TapSan + 4KapSap + Kapas + VaSip)]
(181)

The energy formula becomes more transparent when the simplified notation is used
for the molecular integrals according to Table 5 (Eq. (182)).

2(t0 + ap) £2(t + B)s] + 2(a £ Bs) +j Lk
1 +s2
If we apply exactly the hydrogen atom 1s orbitals (with the orbital exponent a = 1)
then the following identities are fulfilled (Eqgs. (183) and (184)).
to+ o = (Ya(D)|T1 + Var|va(1)) = Eo (183)

t+ 6= (a(V)IT1 + Vltp(1)) = Eos (184)
Consequently the energies of the two molecular states simplify to Eq. (185).
20+ Ps)+jLk
1452

Having the molecular integrals at our disposal, the plot of the molecular energy
is possible (Fig. 15). On lowering R the molecular energy E, passes through a

Ei =Vup+

(182)

EL =2Ey+ Vg + (185)

-0.4 -0.4
0.5 |- -0.5
06 0.6 -
0.7 - 0.7
uw el Ww oql
o 08 o 08
-0.9 - -09 -
1.0+ -1.0 -
-1.1 - _1.1 [
1.2 | | | | 1.2
0 1 2 3 4 5 0 1 2 3 4 5
R/a, Ria,

Fig. 15. Left: energy of the H, molecule by the LVB method; dashed — orbital exponent a = 1.0,
solid — a optimized for each R; right: comparison of the LVB (dashed) and CVB methods for H,;
a=1, solid — E,('%,) and E.('%,) states according to the CVB method
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Table 12. Calculated bonding characteristics for H, molecule

Method Ey/En Ro/ao V)/(T)
1. LVB a=10 —1.11597 1.644 —2.33216
Aopt = 1.166 —1.13908 1.415 —2.00022
2. CVB a=10 —1.11865 1.669
aopy =1.195 —1.14794 1.430
3. Experimental —1.17447 1.401

minimum that corresponds to the equilibrium state. The second solution E_, on
the contrary, describes a non-bonding state whose energy is always above 2E; =
—E}. The two solutions differ from each other in the sign of the [, k, and s integrals
in the energy formula.

The calculated bonding characteristics are collected in Table 12. It can be seen
that the variation of the orbital exponent leads to lowering of the energy and also
satisfies the virial theorem at the equilibrium distance. The existence of the chem-
ical bond, however, is determined by the increase of the kinetic energy and
decrease of the potential energy, as it follows from the virial theorem. It is not
associated with the presence of the resonance and exchange integrals.

Complete VB Method

The VB method can be improved by including more terms, i.e. “structures’ into the
molecular wave function. Within the basis set of 1s functions, in addition to ‘““‘covalent
structures”, also the “ionic structures” can be considered (Egs. (186) and (187)).

Q3 = Ya(1)Ya(2) (186)
Q4 = p(1)1p(2) (187)

The ionic structures refer to a situation when both electrons would be situated on
one atom. The molecular wave function is more flexible as it is expanded over four
product functions (Eq. (188)).

@(1,2) = C1Q1 + Cry 4 C3823 + CyQ4 (188)
The linear variation method implies that the following secular Eq. (189) is to be
obeyed.
h11 —F ]’llz — ES2 h13 —FEs h13 — Es
h12 — ES2 hll —FE h13 — Es ]’l13 — Es
h13 — Es h13 — Es h33 —FE h34 — ES2
h13 —Es h13 —Es h34 — ES2 h33 —F
Using the symmetry considerations, according to which |C| = |C;| and |C3| = |C4|,
it can be rewritten as Eq. (190) where only one independent parameter A occurs.

@(1, 2) = N[(Ql + Qz) + )\(Qg + Q4>]
= N{[a(1)p5(2) + 1hp(1)Ya(2)] + Alpa(1)¥a(2) + 5(1)¥5(2)]}
(190)

det ) (189)
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Because of the symmetry arguments, only @,('%,) and @.('%,) arise from the
mixing of the configurations (Eqgs. (191)—(194)).

@a(lzg) = Na[(21 + Q) + Aa(23 + Q)] (191)
0,C%0) = 0:0%y) = Np(Q1 — @) = (2 — Q,)[2(1 — s2)] '/ (192)
0.('Sy) = N[(Q1 + D) + Me(Q5 + Q)] (193)

0u4('Sy) = 04('Sy) = Ne[(Q — Q)] = (2 — Q)2(1 = )] 7'* (194)

The constant N can be determined from the normalization condition.

The matrix elements hyy, hy, and hjp are already known from the LVB;
the remaining matrix elements among the product functions are given by
Egs. (195)-(197).

hys = (Q3|H|Q3) = (Qu|H|Q4) = 2(t0 + ) + 20 + jio + Viap (195)
hss = (Q3|H|Qy) = 215 + 405 + k + Vaps® (196)

his = (QH|Q3) = (Qa|H|Q3) = (1[H|Q4) = (Qa] H| Q)
=2(to+p)s+t+ B+ as+ B+ h+ Vaps (197)

A truncated problem within the “ionic structures’ (Eq. (198)) has the solutions
shown by Eq. (199) and explicitly by Eq. (200).

h33 —F h34 — ES2 o
det(h34 g g )0 (198)

h3z 3= h3g

Ezy=——— 199
34 1452 (199)

fo+ap+ (t+0)s 2a+jo+20s+k
Ei('S,) = Vap +2 200
3(7 %) AB T 112 112 (200)

1 —(t 2 jo — 208 — k
E('S0) = Vg 4 2000 ZUF D)5 | 20 ¥ o = 205 (201)

1 —s? 1 —s?
Then the energy separation of the two 'Y, states before their “‘interaction” or
mixing is given by Eq. (202).

Jo—J
1+ s?

The off-diagonal matrix element connecting these states can be evaluated with the
help of the wave functions (Egs. (203) and (204)) as follows from Eq. (205) and the
non-orthogonality integral is given by Eq. (206).

01('5) = (2 + Q)21+ 1)) "/? (203)

A=E;—E, = >0 (202)

O3('5) = (2 + Q)21+ 1))/ (204)
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det

Hiz = (01|H|O3) = 4h3[2(1 + 52)] !

Si3 = (61]03) = 4s2(1 + 57)] '

The secular equation in the new basis set of the symmetry adapted VB-func-
tions @1, ©,, @3, and @4 is shown by Eq. (207) and hence the quadratic Eq. (208)
determines the two energies of the lEg states (Eq. (209)).

E, —-E

0

Hiz — SiE

0

0 Hiz; — Si3E 0
E,—E 0 0

0 Es—FE 0
E,—FE

0 0

(E, —E)(E3s —E) — (Hi3 — S3E)* =0

R. Boca and W. Linert
(205)

(206)

=0 (207)

(208)

_ Es; +E; —2H;3513 & \/(E3 - E1)2 +4(Hiz — S13E3)(Hi3 — Si3E))

a,c

2(1 - 5,)

Table 13. Survey of the VB formulae for the H, molecule

(209)

Limited VB

Complete VB

E('Z)

E(Z) /| E(Z)

(425,42, =
31424 E('S,)

E,(z,)

($2,42)

Energy terms for the H, molecule via
the VB method

E,(3Z)

Product functions
Q1 = a(1)ys(2)
@ = 1p(1)1a(2)
Matrix elements h; = (&;|H|®;)
hiy = hx

=2(to + ap) + 2 +j + Vap
hip = 2ts + 40s + k + Vyps®
Symmetry adapted functions
lzg} P
012 =201 +)"?

x (Q) £ Q)

VB energies

hip £ h2
By, = 1=l
12 112
l‘o+0¢0i(l+ﬂ)s
U e G N
+ 1+ 52
2a+j+28s+k
1+ 52

= Vap

Qs = Pa(1)¥a(2)
Qy = Yp(1)p(2)

h33 = hag

=2(to + @) + 2+ jo + Vag
h3g = 2ts +40s + k + VABS2

Interaction matrix elements H; = (0;|H|0))

'Eg,] PO
O34 = [2(1 £
X(Qg:l:.Q4)
h3z &= hay
= =V
3.4 1s 'AB
t0+a0i(t+ﬁ)s
Q0 TNV T
+ 1+s2
2a0+jo£20stk
1452
Hyz = #1813 = 125

hiz = (t0+Ozo)S+t+OéS
+2ﬂ+h+VABS
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The survey of the LVB and CVB formulae is presented in Table 13. The corres-
ponding energies are plotted in Fig. 15. It can be seen that the CVB method im-
proves the LVB approximation only insignificantly for the ground state. This means
that the LVB function already includes a substantial part of the correlation energy.

Amplitude of the Wave Function

Let us visualize the amplitudes of the molecular state functions for the H, molecule
constructed on the basis of the LVB method. The spatial wave functions in the MO
method expressed in terms of the LVB functions are given by Egs. (210)—(213).

OMO('8,) = [2(1 +5)] (@, + @) + (25 + Q)] = M (0" + 6YF)  (210)
@g/lo(lzg) =[2(1 - S)]il[(91 +Q,) — (2, +2,)] =N(07° —037%)  (211)
OYOCy,) = —2(1 - s7)] [, — @,] = 6" (212)

OYO('s,) = [2(1 - )] 2 — Q)] = 6)" (213)

Now we can compare the spatial wave functions of the lEg symmetry according to
the LVB method and the MO method: the MO method includes the ‘“‘ionic struc-
tures” as well but with the same weight as the “covalent structures” Apparently
this overestimation of the ‘“‘ionic structures’ is an intrinsic defect of the MO
method that is improved through CI.

The LVB wave functions in the H, molecule are given through combinations
(Egs. (214)—(217)) where the product functions Qi(ri,r2) = ¥a(r1)s(r2),
Q(r1,12) = Ya(r2)Yp(r1), Q3(ri,r2) = Ya(r)Ya(r2), and Qu(ri,r) = ¥p(r)
1p(r2) depend upon the coordinates of two electrons.

O1{!e(Q1,2)} = [Q1(r1,72) + a1, 12)] /201 + 7)) (214)
02{'S(Q3,Q4)} = [Q3(r1, 12) + Qa(r1, )] /[2(1 + )]/ (215)
O3{°%u(Q1, D)} = [Qu(r1,12) — Qa(r1, )]/ [2(1 — )]/ (216)

Ouf' S (23, %)} = [@3(r1,72) — Qa1 r2)]/2(1 = 7)) (217)

The mapping of the spatial functions along a pair of coordinates {z;,z,} for
fixed {u; = up = ¢ = ¢, = 0} is shown in Fig. 16. The spatial wave functions for
the singlet states are symmetric with respect to the electron coordinate interchange,
whereas that for the triplet state is antisymmetric.

Except the irrelevant sign, the wave function @Y2{3%,(Q;,Q,)} matches
exactly its MO counterpart @Y°{3% (ogaT)} Analogously, the wave function
OB{12,(Q3,Q4)} equals its MO counterpart o¥oly, (alal, O';O’lll)}

The ground-state wave function @{'% o(Q1,2,)} is constant in the internu-
clear region along z; = z,. Notice, just thls wave function includes a part of the
correlation energy. This is the reason why its amplitude increases when the elec-
trons depart from each other: the maximum of the molecular wave function occurs

for z; # 2.
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0207 0.3
e 0.2
0151 © 0.1
0101 0.0
0057 4 -01
0.00 02
Pz 0.3 5
-0.05 < ' 1 2
S, 1 TS L0 2
U, 2 -1 (0(\
% 3752 oS
spatial function ©,{ 'Zg (£2,,2,)}; spatial function ©,{'Z (£2,0,)};
symmetric, as 0,(1,2) =+6,(2,1); antisymmetric, as 0;(1,2) = -0,(2,1);
correlated (the maximum occurs at z, # z,) correlated (the maximum occurs at z, # z,)

spatial function O, { 'Eg(Q3,Q4)}; spatial function ©,{'Z (£2,,92,)}
symmetric, as 0,(1,2) =+06,(2,1); symmetric, as 0,(1,2) =+0,(2,1);
non-correlated (the maximum occurs at z; =z,)  non-correlated (the maximum occurs at z; = z,)

Fig. 16. Amplitudes of the wave functions for H, along the z-coordinates of two electrons according
to the LVB method

In the next stage the configuration interaction can be applied. We need the CI

mixing coefficients of the expansion (Eq. (218)) or the CVB coefficients mixing the
covalent and ionic structures (Eq. (219)).

0,(1,2) =C,-0Y° + ¢, - 6)° (218)

0,(1,2) =C; - OYB + C3- O = N,[(Q) + Q) + Ma(Q3 + Q)] (219)

The linear variation method with orthogonal MO functions yields Eq. (220) and
the solution of the secular equation is given by Eq. (221).

Hy —E, Hyp C
=0 220
( Hi, sz—Ea>(C2) (220)
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_ 2 241/2
Ea—(H11—|—H22)/2—{[(H11—sz)/Z] —|—H2

(221)
We have two unknown mixing coefficients and the energy but only two equations.
The third equation is given by the normalization. In order to determine the mixing
coefficients we need to exploit the additional Eq. (222).

C,=/1-C?

Then we get the first independent Eq. (223).

(222)
(Hii — E,)C1 + Hppy/1-C1 =0 (223)
By rearrangement we obtain Eq. (224).
H
C)| = L2 - (224)
V(Hy — B + H
The second Eq. (225) finally yields Eq. (226).

Hi,C;, + (H22 — Ea>C2 =0 (225)

H
Cy = —C 12

1H22_Ea

(226)
The phase of the wave functions cannot be determined so that both mixing coeffi-
cient can alter their signs without influencing the molecular properties.

The computer program returns the CI mixing coefficients (at R=1.44 ay,

Aope =1.194): C;=0.9933 and C,=—0.1153. The amplitude of the molecular
wave function is shown in Fig. 17 and it is analysed in Table 14.

0257 "
0.20
0.157 .~
0.10
0.05
0.00
-0.05

Spatial function ©,{'%,};a=1.0

Spatial function ©,{'%,}; a = 1.195;

CI mixing coefficients 0.9933 and —-0.1153
Fig. 17. Amplitudes of the wave functions for H, along the z-coordinates of two electrons according

to either MO + CI or the CVB methods



922

R. Boca and W. Linert

A=0.28
z, =t0.72 z,= fo_72
AHiz 0.16
z,=2,=-0.72
H H
R=1.44 a,

Fig. 18. Electron positions for which the amplitude (A) of the ground-state molecular wave function

is maximum

Table 14. Principal features of the ground-state molecular wave function for the H, molecule

Function

Feature

Drawback

MO, 6M° Fig. 12

VB, 0)® Fig. 16

CI, 6", or CVB,
OSVB, Fig. 17

The function is maximum when both
electrons are either at the same centre
or at the opposite centres.

Dominant part of the electron
correlation is included: the function is
maximum when both electrons are
apart from each other (being at
opposite centres).

Electron correlation is included: the
function is maximum when both
electrons are apart from each other
(being at opposite centres) — Fig. 18.
The wave function is non-constant in
the internuclear region.

No electron correlation; two
electrons (of opposite spin) can
occupy the same space. The
“ionic structures’ are included
with the same weight as the
‘“‘covalent structures’.

The wave function is constant in
the internuclear region for z; = z5.
This is an overestimation of the
covalent structures.

Acknowledgements

Thanks for financial support are due to the “Fonds zur Forderung der Wissenschaftlichen Forschung in
Osterreich” (Project 15874-N03) and Slovak grant agencies (VEGA 1/2453/05, APVT 20-005204).

References

[1] McWeeny R, Sutcliffe BT (1969) Methods of Molecular Qauntum Mechanics. Academic Press,

London

[2] Offenhartz POD (1970) Atomic and Molecular Orbital Theory. McGraw-Hill, New York
[3] Pople JA, Beveridge DL (1970) Approximate Molecular Orbital Theory. McGraw-Hill,

New York



Today’s View of the Chemical Bond 923

(4]
(5]

(6]

(71
(8]

[10]
(11]
[12]

[13]
[14]

[15]
[16]
[17]
(18]

(19]
(20]
(21]

(22]
(23]
[24]
[25]

Lowe JP (1978) Quantum Chemistry. Academic Press, New York

Flurry RL Jr (1983) Quantum Chemistry. An Introduction. Prentice-Hall, Engelwood Cliffs,
New Jersey

Christoffersen RE (1989) Basic Principles and Techniques of Molecular Quantum Mechanics.
Springer, New York

Levine IN (1991) Quantum Chemistry, 4™ ed. Prentice Hall, Engelwood Cliffs

Atkins PW, Friedman RS (1997) Molecular Quantum Mechanics. Oxford University Press,
Oxford

Coulson CA (1952) Valence. Clarendon Press, Oxford

Pauling L (1960) The Nature of the Chemical Bond, 3™ ed. Cornell University Press

Slater JC (1963) Quantum Theory of Molecules and Solids, vol 1. McGraw-Hill, New York
Lowdin PO, Pullman B (1964) Molecular Orbitals in Chemistry, Physics and Biology. Academic
Press, New York

Woodwaard RB, Hoffmann R (1970) The Conservation of Orbital Symmetry. Weinheim
Kolos W (1971) Kwantowe teorie w chemii i biologii. Zaklad Narodowy Imenia Ossolinskich.
Wroclaw

Pearson RG (1976) Symmetry Rules for Chemical Reactions. Wiley, New York

Murrell JN (1977) Struct Bonding 32: 93

Salem L (1982) Electrons in Chemical Reactions: First Principles. Wiley, New York

Murrell JN, Carter S, Farantos SC, Huxley P, Varandas AJC (1984) Molecular Potential Energy
Functions. Wiley, Chichester

Murrell JN, Kettle SF, Teddler JM (1985) The Chemical Bond, 2™ ed. Wiley, Chichester
Hirst DM (1985) Potential Energy Surfaces. Taylor & Francis, London

Albright TA, Burdett JK, Whangbo MH (1985) Orbital Interactions in Chemistry. Wiley,
New York

Burdett JK (1997) Chemical Bond. Wiley, Chichester

Sen KD, Jorgensen CK (eds) (1987) Electronegativity. Struct. Bonding 66, Springer, Berlin
Sen KD (ed) (1993) Chemical Hardness. Struct Bonding 80

Pearson RG (1997) Chemical Hardness. Wiley-VCH, Weinheim



