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Summary. The chemical bond is a stabilization of a system with a characteristic nuclear configuration,

electronic structure, and a set of physico-chemical properties. The physical origin of the chemical bond

lies in an acceleration of the electrons by a joint potential of several nuclei. The quantitative description

of the chemical bond in the dihydrogen molecule can be treated within the MO or VB method. Both

of them have some intrinsic drawbacks which can be overcome when the MO method is followed by

the configuration interaction, and the limited VB method by its complete counterpart that includes the

‘‘ionic structures’’. In the end, both results are equivalent as they include the correlation energy. The

amplitudes of the two-electron wave functions show that the maximum probability is obtained when

the electrons are correlated – kept apart at the individual centers. This condition is very natural for the

limited VB; it includes a part of the correlation energy. Therefore the VB method is a better reference

for the evaluation of the exchange coupling constant that separates the ground singlet state from the

lowest triplet one.

Keywords. Chemical bond; Molecular orbital method; Valence bond method; Configuration inter-

action; Electron density.

Introduction

The ambition of the present communication is to bring a review of basic formulae
for the energies of the lowest energy states in the prototypal molecule of the chem-
ical bond – the dihydrogen molecule and the related molecular cation and anion.

The project involves hand, but ab initio calculations at different levels of
sophistication: the simple molecular orbital (MO) method, the limited valence
bond (LVB) method, the MO method improved by the configuration interaction
(MOþCI), and finally, the complete VB (CVB) method. Each of these stages
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results in some energy formulae in which integrals over the basis set functions (the
atomic 1s orbitals) occur.

However, these formulae are method-dependent and bring little insight into the
physical nature of the chemical bond [1–22]. In no case it could be concluded that
the chemical bond results as a consequence of the exchange integral; such an
integral is absent in the dihydrogen cation which is bound by the chemical bond
either. Within the MO method the sign of the hybrid integral plays a key role in
stabilisation of the ground state of the dihydrogen molecule. The only correct
statement is that the chemical bond appears as a consequence of the acceleration
of electrons by a joint potential of several nuclei – the result following from the
application of the virial theorem.

Both, the MO and the LVB methods, possess some intrinsic defects. We will
see that the MO method involves the ‘‘valence structures’’ and the ‘‘ionic structures’’
with the same weight whereas the LVB ignores the ‘‘ionic structures’’ completely.
The results of the MOþCI method and the CVB method are exactly the same:
they involve the maximum correlation energy in the given basis set. The impact of
the electron correlation is not only in the improvement of the energy of the ground
state. It has a serious consequence in the amplitude of the two-electron wave
function: this show a maximum probability when the electrons are correlated –
kept apart at the individual centers.

The Virial Theorem

The kinetic energy operator and the potential energy operator in atoms and mole-
cules have a definite form. This fact implies that a relationship between the mean
values of the kinetic energy and the potential energy exists. The relationship is
fulfilled for the exact wave function as well as for the best trial wave function in
terms of the variation principle. We will derive that the virial ratio in atoms and in
equilibrium geometry of molecules is exactly v ¼ hVi=hTi ¼ �2 (atomic units are
used throughout this chapter).

Let Cðr1; . . . ; rnÞ be an n-electron wave function yielding the mean value
described by Eq. (1).

hAi ¼ hCjÂAjCi ¼
ð
� � �

ð
C�ðr1; . . . ; rnÞÂACðr1; . . . ; rnÞdr1 � � � drn ð1Þ

Now we introduce a scaling factor, s, which stretches all coordinates uniformly;
thus we have the scaled wave function Csðsr1; . . . ; srnÞ which gives the following
mean value (Eq. (2)).

hAsi ¼ hCsjÂAjCsi ¼
ð
. . .

ð
C�ðsr1; . . . ; srnÞÂACðsr1; . . . ; srnÞdðsr1Þ � � � dðsrnÞ ð2Þ

This relationship can be modified as follows in Eq. (3).

hAsi ¼ sm

ð
� � �

ð
C�ðsr1; . . . ; srnÞ½s�mÂAðr1; . . . ; rnÞ�Cðsr1; . . . ; srnÞdðsr1Þ . . . dðsrnÞ

ð3Þ
Let us assume that our operator obeys the following relationship (Eq. (4)).

s�mÂAðr1; . . . ; rnÞ ¼ ÂAsðsr1; . . . ; srnÞ ð4Þ
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Then the mean values in scaled and unscaled coordinates interrelate as shown in
Eq. (5) where we utilize a property that the scaling leaves the integration limits
ð�1;þ1Þ unaffected.

hAsi ¼ smhCsjÂAjCsi ¼ smhAi ð5Þ
The fulfillment of the scaling hypothesis should be examined for every operator

separately. As a result of the analysis, the power m results.
In an n-electron atom the kinetic energy operator (expressed in polar coordi-

nates) has the form shown in Eq. (6).

T̂TðrÞ ¼ ð�1=2Þ
Xn

i

1

r2
i

d

dri

�
r2

i

d

dri

�
þ ð�1=2Þ

Xn

i

�
1

r2
i

r2
i ð�i; ’iÞ

�
ð6Þ

The scaled kinetic energy operator, from simple algebra, is given by Eq. (7) so that
we arrive at m ¼ 2. The potential energy operator is described by Eq. (8).

T̂TðsrÞ ¼ s�2T̂TðrÞ ð7Þ

V̂VðrÞ ¼ �
Xn

i

Zi

ri

þ
Xn

i< j

1

rij

ð8Þ

The scaled potential energy operator obeys the relationship shown in Eq. (9) giving
rise to m ¼ 1.

s�1V̂VðrÞ ¼ V̂VðsrÞ ð9Þ
On summary, the following relations hold true (Eqs. (10) and (11)) and the total

energy of the atom becomes as given by Eq. (12).

hTsi ¼ s2hTi ð10Þ

hVsi ¼ shVi ð11Þ

hEsi ¼ hTsi þ hVsi ¼ s2hTi þ shVi ð12Þ

The total atomic energy is subject to variation with respect to the scaling factor s
(Eq. (13)) and we arrived at the optimum value (Eq. (14)).

@hEsi
@s

¼ 2shTi þ hVi ¼ 0 ð13Þ

sopt ¼ �hVi=½2hTi� ð14Þ

If our trial wave function is already the optimum wave function, the scaling of
coordinates is incapable of energy lowering. Then sopt ¼ 1 applies and conse-
quently the virial ratio (for atoms) is given by Eq. (15).

v ¼ hVðsoptÞi
hTðsoptÞi

¼ �2; ½exactly� ð15Þ

For a diatomic molecule the wave function includes an internuclear distance R
in the role of a parameter (the Born-Oppenheimer approximation is utilized), so
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that we have Cðr1; . . . ; rn;RÞ and its scaled counterpart Csðsr1; . . . ; srn; sRÞ. Using
a substitution of t ¼ sR we can write Eqs. (16)–(18).

hTsi ¼ hTðs; tÞi ¼ s2hTð1; tÞi ð16Þ

hVsi ¼ hVðs; tÞi ¼ shVð1; tÞi ð17Þ

hEsi ¼ hTsi þ hVsi ¼ s2hTð1; tÞi þ shVð1; tÞi ð18Þ
The variation of the total molecular energy brings Eq. (19).

@hEsi
@s

¼ 2shTð1; tÞi þ hVð1; tÞi þ s2 @hTð1; tÞi
@s

þ s
@hVð1; tÞi

@s
¼ 0 ð19Þ

This equation can be rewritten into the following form (Eq. (20)).

2shTð1; tÞi þ hVð1; tÞi þ s2R
@hTð1; tÞi

@t
þ sR

@hVð1; tÞi
@t

¼ 0 ð20Þ

We utilized the identity (Eq. (21)) fulfilled for any function.

@

@s
f ðtÞ ¼ @

@t

�
@t

@s

�
f ðtÞ ð21Þ

In our case of t ¼ sR we get Eq. (22).

@

@s
f ðtÞ ¼ R

@

@t
f ðtÞ ð22Þ

Under the assumption that the wave function is already optimum, the scaling
factor becomes sopt ¼ 1. Collecting the kinetic and the potential energy terms into
the total molecular energy (Eq. (23)) we finally get Eq. (24).

@hTð1; tÞi
@t

þ @hVð1; tÞi
@t

¼ @hEð1; tÞi
@t

¼ @hEi
@ðsoptRÞ

¼ @hEi
@R

ð23Þ

2hTi þ hVi þ R

�
@hEi
@R

�
¼ 0 ð24Þ

This is a form of the virial theorem for diatomic molecules. In the optimum geo-
metry, however, the energy gradient vanishes and thus we arrive at the same
expression for the virial ratio as for atoms.

For a diatomic molecule there is a problem of two variables: R (internuclear
distance) and a (orbital exponent). For a fixed R there exists a value of aoptðRÞ for
which the virial equation is fulfilled. Only a single pair faopt;R0g yields the virial ratio
v ¼ �2 (exactly). For different molecular states the aoptðRÞ are different functions.

The Physical Nature of the Chemical Bond

A bound system is more stable relative to its constituents: it has a lower energy
relative to the sum of the energies of the constituents so that the bonding energy is
given by Eq. (25).

Eb ¼
X

i

EiðconstituentsÞ � EðsystemÞ>0 ð25Þ
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The chemical bond is the raison d’êetre of molecules whereas the intermolecular
interactions are responsible for the existence of the condensed phase. Individual
subsystems bound due to intermolecular interactions retain partially their chemical
individuality and chemical properties.

Although the border between the systems stabilized by the chemical bond and
the intermolecular interaction is not well established, the systems bound by the
chemical bond, in general, possess much higher stabilization (binding) energy and
the equilibrium separation appears at lower distances.

Balance of the Kinetic and Potential Energy

In atoms, the virial theorem implies that Eq. (26) is valid.

hEiat ¼ �hTiat ¼ hViat=2 ð26Þ
In the equilibrium geometry of a molecule, when @hEi=@R ¼ 0, the virial theorem
adopts a similar form (Eq. (27)).

hEimol ¼ �hTimol ¼ hVimol=2 ð27Þ
Since the molecular binding energy is positive (Eq. (28)) the application of the
virial theorem ends up in two conditions (Eqs. (29) and (30) or (31) and (32)).

Eb ¼ hEiat � hEimol>0 ð28Þ

�hTiat> � hTimol ð29Þ

hViat=2>hVimol=2 ð30Þ

hTimol>hTiat ð31Þ
i.e., the kinetic energy increases upon formation of a molecule

hVimol<hViat ð32Þ
i.e., the potential energy decreases (becomes more negative).

This means that in any molecule: the electrons are moving faster as they are
accelerated by the increasing potential of several nuclei. Such a situation applies
only when the electrons are concentrated in the internuclear region.

The binding of a hydrogen molecule is EbðH2Þ ¼ 4:7 eV. Using the statement
of the virial theorem we arrive at Eqs. (33) and (34).

Eb ¼ �2hTðHÞi þ hTðH2Þi ¼ 4:7 eV ð33Þ

Eb ¼ ½2hVðHÞi � hVðH2Þi�=2 ¼ 4:7 eV ð34Þ
This means that the kinetic energy increased by 4.7 eV whereas the potential
energy decreased by 9.4 eV. The potential energy of a molecule, however, includes
the internuclear repulsion term VNN, which is easily evaluated knowing the inter-
nuclear distance (R0¼ 74.1 pm): VNNðR0Þ ¼ 19:4 eV.

Energy Functions

Let us consider the molecular energy as a function of the number of electrons, N,
and the external potential (the electron-nuclear attraction plus any other potential
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applied to the molecule), vð~rrÞ. Then it is legitimate to write Eq. (35) and a different
degree of differentiation yields the energy functions as listed in Table 1.

E ¼ E½N; vð~rrÞ� ð35Þ
A contemporary definition says that the electronegativity equals to the negative

of the chemical potential of an electron: the resistance of the system (an atom or
molecule) against the change of the number of electrons (N) (Eq. (36)).

�ðAÞ ¼ ��e ¼ � @EðAÞ
@N

ð36Þ

Such a differential definition does not allow a direct measurement since the number
of electrons can alter only by discrete quanta.

Some theoretical arguments allow expressing the electronegativity in the form
introduced by Mulliken (Eq. (37)) where the ionization energy, IA, and the electron
affinity, AA, occurs (a recommended sign convention of the electron affinity is
applied: this is positive for the energy given to the system).

�ðAÞ ¼ IA � AA

2
þ O3 ð37Þ

Table 1. Derivatives of the electronic energy [23–25]

Order Scalars (molecule characteristics) Functions (site characteristics)

0 Energy E ¼ E½N; vð~rrÞ�
1

Chemical potential � ¼
�
@E

@N

�
vð~rrÞ

Electron density

�ð~rrÞ ¼
�

@E

@vð~rrÞ

�
N

;
Ð
�ð~rrÞd~rr ¼ N

2 Hardness � ¼
�
@2E

@N2

�
vð~rrÞ

Softness S ¼ 1=�

Fukui function

f ð~rrÞ ¼
�
@�ð~rrÞ
@N

�
vð~rrÞ

¼
�

@2E

@vð~rrÞ@N

�
;
Ð

f ð~rrÞd~rr ¼ 1

Response function �1ð~rr;~rr 0Þ ¼
�
@�ð~rrÞ
@vð~rr 0Þ

�
N

Table 2. Some electronegativity scales

Type Key formula

1. Pauling j�A � �Bj ¼ C½EA�B � ðEA�AEB�BÞ1=2�1=2
; �H ¼ 2:1 – origin

of the scale; EA�B – bond dissociation energy

2. Mulliken
�A ¼ IA � AA

2
; IA – ionisation energy; AA – electron

affinity defined as a supplied energy

3. Allred-Rochow
�A ¼ a

Zeff;A

r2
cov;A

þ b; Zeff;A – effective nuclear charge according

to Slater rules; rcov;A – covalent radius

4. Gordy
�A ¼ a

Z eff;A

rcov;A
þ b

5. Sanderson
�A ¼ DA

Dinterpol;A
, D ¼ a

Zeff;A

r3
cov;A
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However, some other definitions (or scales) are available among which the
Pauling and the Allred-Rochow definition are well known (Table 2).

Electronegativity expresses the ability of the system to attract its electrons and
thus the lower the electronegativity the greater the amplitude of electrons and
consequently the higher their mobility, and vice versa. Therefore the electronega-
tivity is helpful in explaining differences between different types of chemical bond.

Types of the Chemical Bond

There are three principal kinds of chemical bond: the covalent, metallic, and the
ionic bond (Table 3) whose key features are shortly reviewed.

1) When the electronegativity of both bonding partners is high, the covalent bond
is formed (like in H2O and H2C¼CH2):

a) the bonding electrons tend to be localized in the direction of the atomic
linkage;

b) in addition to the single bond, multiple bonds with the nodal structure (� and
�) also appear;

c) a saturation property means that only a limited number of bonds are formed
(e.g. the carbon atom has a maximum of four).

2) When the electronegativity of both bonding partners is low, the metallic bond is
formed (like in metallic Al):

a) the electrons possess a high mobility and are shared by a whole solid which
allows us to speak about an electron gas;

b) the bond is delocalised over a number of centers and has no saturation property.

3) When the bonding partners differ in their electronegativities substantially, the
ionic bond is formed (like in NaCl):

a) it has neither the directional nature nor the nodal structure;
b) it does not depend upon the quality of the ions since the cohesive forces are

the Coulomb interactions among ions;
c) it does not possess a saturation property.

Table 3. Characteristic features of the individual types of the chemical bond

Covalent bond Metallic bond Ionic bond

High electronegativity

of the bonding partners

Low electronegativity

of the bonding partners

Different electronegativity

of the bonding partners

Saturation property No saturation No saturation

Directional, almost localized Delocalized No directional

Multiplicity No multiple bonds

Nodal structure No nodal structure

Strong overlap of atomic

wave functions

Strong overlap of atomic

wave functions

Low overlap of atomic

wave functions

Low amplitude and low

mobility of electrons

(insulators)

High amplitude and high

mobility of electrons

(conductors, electron gas)

Low amplitude and no mobility

of electrons (insulators)
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Frequently the actual chemical bond is a combination of the limiting cases as
shown by the central triangle in Fig. 1.

Description of the Chemical Bond

Several theoretical approaches were developed that are capable of describing the
chemical bond:

1. the molecular orbital (MO) method (eventually followed by the configuration
interaction – CI) plays a central role at present;

2. the valence bond (VB) method, which is rarely used at present;
3. the method of localized MOs preceded by the hybridisation of atomic orbitals

and eventually followed by the perturbative CI (the PCILO method), which is
again rarely used at present;

4. the density functional theory (DFT), which is of increasing popularity;
5. the methods for periodic solids – the crystal orbital (CO) method, the ASW

(Augmented Spherical Waves), the APW (Augmented Plane Wave), etc.

The MO and VB methods will be described in detail later.

Angular Momentum

The angular momentum of a massive particle about the origin is introduced as the
vector normal to the plane of motion and can be expressed in the form of Eq. (38).

~ll ¼~rr �~pp ð38Þ
If we apply the operator expression for~pp ¼ �i�h ~rr in its differential form, then the

following commutation relations can be derived (Eqs. (39)–(44)) where l̂l
2 ¼ l̂l

2

x þ
l̂l
2

y þ l̂l
2

z is the square of the angular momentum, and ĤH – the Hamiltonian; for a ¼
x; y; z

l̂lx̂lly � l̂lŷllx ¼ i�ĥllz ð39Þ

l̂lŷllz � l̂lẑlly ¼ i�ĥllx ð40Þ

Fig. 1. Types and examples of the chemical bond
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l̂lẑllx � l̂lx̂llz ¼ i�ĥlly ð41Þ

½̂ll2
; l̂la� ¼ 0 ð42Þ

½ĤH; l̂l2� ¼ 0 ð43Þ

½ĤH; l̂la� ¼ 0 ð44Þ
Only three of these operators commute simultaneously: ĤH, l̂l

2
, and one compo-

nent (say the third component l̂lz) of the angular momentum. Thus we can use an
indexation jCii � jE; �; �i for a set of eigenstates which simultaneously are
eigenstates of the operators ĤH, l̂l

2
, and l̂lz. This result plays a key role in the theory

of the electronic structure of atoms: an arbitrary eigenfunction can be expanded as

a sum over eigenfunctions common for the operators ĤH; l̂l
2

and l̂lz (Eq. (45)).

jCii ¼
X

i

CijE; �; �ii ð45Þ

Using the shift operators, the following results can be derived (Eqs. (46)–(49)).

l̂lzjl;mi ¼ m�hjl;mi ð46Þ

l̂l
2jl;mi ¼ lðl þ 1Þ�h2jl;mi ð47Þ

l̂lxjl;mi ¼ 1

2
½ðl � mÞðl þ m þ 1Þ�1=2�hjl;m þ 1i þ 1

2
½ðl � m þ 1Þðl þ mÞ�1=2�hjl;m � 1i

ð48Þ

l̂lyjl;mi ¼ 1

2i
½ðl�mÞðlþmþ 1Þ�1=2�hjl;mþ 1i� 1

2i
½ðl�mþ 1ÞðlþmÞ�1=2�hjl;m� 1i

ð49Þ
The last two equations are nothing else but the statement quoted above: the eigen-
functions of l̂lx and l̂ly operators are expanded as a sum over eigenfunctions com-

mon for the operators ĤH, l̂l
2
, and l̂lz, i.e. jl;mi.

The eigenfuctions of the orbital angular momentum can be explicitly expres-
sed in the form of the spherical harmonic functions Ylm. The restriction of
l ¼ 0; 1; 2; . . . is accepted for the orbital angular momentum in order to keep a
geometrical meaning that the rotation about the angle 2� leaves its wave function
invariant. However, the quantum number l could adopt also half-integer values, say
1=2, 3=2, etc. This set is reserved for the spin; the spin of the electron is s¼ 1=2.
Then the rotation about the angle 4� leaves its wave function invariant.

Wave Functions

In a many-electron system the appropriate wave function should fulfill two basic
requirements:

1. it is antisymmetric with respect to interchange of two electrons;
2. it is an eigenfuction of the compound angular momenta.
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When the spin-orbit coupling is ignored, the orbital and spin angular momenta are
independent of each other and the second requirement is to be obeyed individually

for the L̂L
2
, L̂Lz, ŜS

2
, and ŜSz operators.

In this section we will introduce several kinds of wave functions which
we will handle later. These are compiled in Table 4 and their short discussion
follows.

a) Two 1s-atomic orbitals  A and  B centered at the atom A and B; each of them is
a solution of the Schr€oodinger equation for the hydrogen atom and they have the
form shown in Eqs. (50) and (51).

 A ¼ ða3=�Þ1=2
e�arA ð50Þ

 B ¼ ða3=�Þ1=2
e�arB ð51Þ

The orbital exponent 	 scales the atomic orbital: it expands when 	>1 and
compresses when 	<1.

b) Two molecular orbitals ’þ and ’� that are linear combinations of atomic
orbitals; they are linear combinations of the atomic orbitals (Eq. (52)) and since
the centers are equivalent the only parameter is the normalization constant N�
which can be easily determined from the normalization condition.

’�ðiÞ ¼ c� AðiÞ þ c0� BðiÞ ¼ N�½ AðiÞ � BðiÞ�
¼ ð2� 2SABÞ�1=2½ AðiÞ � BðiÞ� ð52Þ

The symbol i specifies that the i-th electron occupies the molecular orbital.
c) Two spin functions 	 and 
 for the spin-up orientation (ms ¼ þ1=2Þ and spin-

down orientation ðms ¼ �1=2Þ. Their actual form need not (and cannot) be
specified as only rules for handling with them are known (the orthonormality
condition).

Table 4. List of the wave functions in the H2 molecule

Wave function Eigenfunction Form Number

One-electron functions

Atomic 1s orbitals l̂l2, l̂lz  A ¼ ða3=�Þ1=2
e�arA 2

Molecular orbitals ’� ðiÞ ¼ ð2 � 2SABÞ�1=2½ AðiÞ �  BðiÞ� 2

Spin functions ŝs2, ŝsz 	ðms ¼ þ1=2Þ, 
ðms ¼ �1=2Þ 2

Spin-orbitals �1 through �4; e.g., �1ðiÞ ¼ ’þðiÞ	ðiÞ 4

Two-electron functions

Two-electron spin

functions

ŜS2, ŜSz �ðS;MSÞ; e.g., �ð0; 0Þ ¼ ½	ð1Þ
ð2Þ � 
ð1Þ	ð2Þ�=
ffiffiffi
2

p
4

Spatial wave function L̂L2, L̂Lz Y1 through Y4; e.g., Y1ð1�gÞ ¼ ’þð1Þ’þð2Þ 4

Product functions O1 through O4 4

Determinantal wave

function

L̂Lz, ŜSz F1 through F6; e.g., jF1ð1�g: �
2
gÞi ¼ j’þ; �’’þj 6

True wave function L̂L2, L̂Lz, ŜS2, ŜSz C1 through C6 6
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d) The two spin functions are used to form four two-electron spin functions of the
type �ðS;MsÞ (Eqs. (53)–(56))

�ð0; 0Þ ¼ ½	ð1Þ
ð2Þ � 
ð1Þ	ð2Þ�=
ffiffiffi
2

p
ð53Þ

�ð1; 0Þ ¼ ½	ð1Þ
ð2Þ þ 
ð1Þ	ð2Þ�=
ffiffiffi
2

p
ð54Þ

�ð1;þ1Þ ¼ 	ð1Þ	ð2Þ ð55Þ

�ð1;�1Þ ¼ 
ð1Þ
ð2Þ ð56Þ
While the first function for the spin singlet ðS ¼ 0Þ is antisymmetric with
respect to interchange of the electrons, the remaining functions for the spin
triplet ðS ¼ 1Þ are symmetric in this respect.

The transformation of the local-spin wave functions to the molecular-spin
ones can be performed with the help of the transformation matrix U for
coupling of two spins s1 ¼ s2 ¼ 1=2 (Eqs. (57) or (58)).

jS;MSi ¼ Ujðs1; s2Þ;m1;m2i ð57Þ

j0; 0i
j1;�1i
j1; 0i
j1;þ1i

0
BB@

1
CCA ¼

0 �1=
ffiffiffi
2

p
1=

ffiffiffi
2

p
0

1 0 0 0

0 1=
ffiffiffi
2

p
1=

ffiffiffi
2

p
0

0 0 0 1

0
BB@

1
CCA

j �1=2;�1=2i
j �1=2;þ1=2i
j þ1=2;�1=2i
j þ1=2;þ1=2i

0
BB@

1
CCA ð58Þ

The members of the unitary matrix U are nothing but the Clebsch-Gordan
coefficients hs1; s2;m1;m2jSMi for the addition of the angular momenta.

e) Four molecular spinorbitals are formed by combining the two molecular orbit-
als and two spin functions, namely �1ðiÞ ¼ ’þðiÞ	ðiÞ, �2ðiÞ ¼ ’þðiÞ
ðiÞ,
�3ðiÞ ¼ ’�ðiÞ	ðiÞ, and �4ðiÞ ¼ ’�ðiÞ
ðiÞ. These still are one-electron wave
functions and a shortened notation for them used to be applied: �1 ¼ ’þ,
�2 ¼ �’’þ, �3 ¼ ’�, and �4 ¼ �’’�.

f) Six determinantal wave functions can be created form four molecular spinorbi-
tals and two electrons: F1 through F6. This number matches the number of
combinations (Eq. (59) and Fig. 2).

n ¼
�

spinorbitals

electrons

�
¼

�
4

2

�
¼ 6 ð59Þ

Fig. 2. Six electron configurations of the H2 molecule
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Each Slater determinant refers to a definite electron configuration (Fig. 2) and
guarantees the antisymmetry condition (Eqs. (60)–(65)).

jF1ð1�g : �
2
gÞi ¼ j’þ; �’’þj ð60Þ

jF2ð1�g : �
2
uÞi ¼ j’�; �’’�j ð61Þ

jF3ð3�u : �"g�
"
uÞi ¼ j’þ; ’�j ð62Þ

jF4ð3�u : �#g�
#
uÞi ¼ j�’’þ; �’’�j ð63Þ

jF5ð�u : �#g�
"
uÞi ¼ j�’’þ; ’�j ð64Þ

jF6ð�u : �"g�
#
uÞi ¼ j’þ; �’’�j ð65Þ

For instance one of the Slater determinants is given by Eq. (66) and when the
electrons 1 and 2 are interchanged, then the resulting wave function alters its
sign as shown by Eq. (67).

j’�; �’’�j ¼ ð2Þ�1=2½’�ð1Þ	ð1Þ’�ð2Þ
ð2Þ � ’�ð2Þ	ð2Þ’�ð1Þ
ð1Þ�
¼ ½’�ð1Þ’�ð2Þ�ð1=

ffiffiffi
2

p
Þ½	ð1Þ
ð2Þ � 
ð1Þ	ð2Þ� ð66Þ

j�’’�; ’�j ¼ ð2Þ�1=2½’�ð1Þ
ð1Þ’�ð2Þ	ð2Þ � ’�ð2Þ
ð2Þ’�ð1Þ	ð1Þ�
¼ ½’�ð1Þ’�ð2Þ�ð1=

ffiffiffi
2

p
Þ½�	ð1Þ
ð2Þ þ 
ð1Þ	ð2Þ� ¼ �j’�; �’’�j ð67Þ

Remember that a single Slater determinant guarantees that this is an eigenfunction
of the projections of the orbital L̂Lz and spin ŜSz angular momenta operators. How-

ever, this is not an eigenfunction of the total angular momentum operators L̂L
2

and

ŜS
2

in general.
g) Six true wave functions C1 through C6 guarantee that the true state vectors

jS;MSi are the eigenfunctions of all angular momenta operators, L̂L
2
, L̂Lz, ŜS

2
, and

ŜSz; this is provided by an eventual linear combination of Slater determinants
(functions C5 and C6) (Eqs. (68)–(73)).

jC1ð1�g; 0; 0Þi ¼ jF1ð1�g : �2
gÞi

¼ ½’þð1Þ’þð2Þ�
1ffiffiffi
2

p ½	ð1Þ
ð2Þ � 
ð1Þ	ð2Þ� ð68Þ

jC2ð1�g; 0; 0Þi ¼ jF2ð1�g : �2
uÞi

¼ ½’�ð1Þ’�ð2Þ�
1ffiffiffi
2

p ½	ð1Þ
ð2Þ � 
ð1Þ	ð2Þ� ð69Þ

jC3ð3�u; 1;þ1Þi ¼ jF3ð3�u : �"g�
"
uÞi

¼ 1ffiffiffi
2

p ½’þð1Þ’�ð2Þ � ’þð2Þ’�ð1Þ�	ð1Þ	ð2Þ ð70Þ

jC4ð3�u; 1;�1Þi ¼ jF4ð3�u : �#g�
#
uÞi

¼ 1ffiffiffi
2

p ½’þð1Þ’�ð2Þ � ’þð2Þ’�ð1Þ�
ð1Þ
ð2Þ ð71Þ
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jC5ð3�u; 1; 0Þi ¼
1ffiffiffi
2

p ½jF5ð�u : �#g�
"
uÞi þ jF6ð�u : �"g�

#
uÞi�

¼ 1ffiffiffi
2

p ½’þð1Þ’�ð2Þ � ’þð2Þ’�ð1Þ�

� 1ffiffiffi
2

p ½	ð1Þ
ð2Þ þ 
ð1Þ	ð2Þ� ð72Þ

jC6ð1�u; 0; 0Þi ¼
1ffiffiffi
2

p ½jF5ð�u : �#g�
"
uÞi � jF6ð�u : �"g�

#
uÞi�

¼ 1ffiffiffi
2

p ½’þð1Þ’�ð2Þ þ ’þð2Þ’�ð1Þ�

� 1ffiffiffi
2

p ½	ð1Þ
ð2Þ � 
ð1Þ	ð2Þ� ð73Þ

h) Four different spatial wave functions can be identified in the MO method:

1) for the ground singlet state 1�gð�2
gÞ (symmetric function) (Eq. (74));

Yþ ¼Y1ð1�gÞ ¼ ’þð1Þ’þð2Þ ¼ ð2þ 2SABÞ�1

�f½ Að1Þ Bð2Þ þ Bð1Þ Að2Þ� þ ½ Að1Þ Að2Þ þ Bð1Þ Bð2Þ�g ð74Þ
2) for the excited singlet state 1�gð�2

uÞ (symmetric function) (Eq. (75));

Y� ¼Y2ð1�gÞ ¼ ’�ð1Þ’�ð2Þ ¼ ð2� 2SABÞ�1

�f½ Að1Þ Bð2Þ þ Bð1Þ Að2Þ� � ½ Að1Þ Að2Þ þ Bð1Þ Bð2Þ�g ð75Þ
3) for the triplet spin state 3�uð�1

g�
1
uÞ (antisymmetric function) (Eq. (76));

Y3ð3�uÞ ¼ Y4ð3�uÞ ¼ Y5ð3�uÞ ¼
1ffiffiffi
2

p ½’þð1Þ’�ð2Þ � ’þð2Þ’�ð1Þ�

¼ 2�1=2ð2 þ 2SABÞ�1=2ð2 � 2SABÞ�1=2
2½ Bð1Þ Að2Þ

�  Að1Þ Bð2Þ�
¼ �½2ð1 � S2

ABÞ�
�1=2½ Að1Þ Bð2Þ �  Bð1Þ Að2Þ� ð76Þ

4) for the singlet state 1�uð�1
g�

1
uÞ (symmetric function) (Eq. (77)).

Y6ð1�uÞ ¼
1ffiffiffi
2

p ½’þð1Þ’�ð2Þ þ ’þð2Þ’�ð1Þ�

¼ 2�1=2ð2 þ 2SABÞ�1=2ð2 � 2SABÞ�1=2
2½ Að1Þ Að2Þ

�  Bð1Þ Bð2Þ�
¼ ½2ð1 � S2

ABÞ�
�1=2½ Að1Þ Að2Þ �  Bð1Þ Bð2Þ� ð77Þ

i) Four different product functions can be created for the VB method

1) the two ‘‘valence structures’’ (Eqs. (78) and (79));

O1 ¼  Að1Þ Bð2Þ ð78Þ

O2 ¼  Að2Þ Bð1Þ ð79Þ
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2) the two ‘‘ionic structures’’ (Eqs. (80) and (81)).

O3 ¼  Að1Þ Að2Þ ð80Þ

O4 ¼  Bð1Þ Bð2Þ ð81Þ
j) Symmetry adapted VB-functions are given by Eqs. (82)–(85).

YVB
1 ð1�gÞ ¼ ½2ð1 þ s2Þ��1=2ðO1 þ O2Þ ð82Þ

YVB
3 ð3�uÞ ¼ ½2ð1 � s2Þ��1=2ðO1 � O2Þ ð83Þ

YVB
2 ð1�gÞ ¼ ½2ð1 þ s2Þ��1=2ðO3 þ O4Þ ð84Þ

YVB
4 ð1�uÞ ¼ ½2ð1 � s2Þ��1=2ðO3 � O4Þ ð85Þ

The relationship between the spatial functions in the MO and VB methods can
be easily proven by Eqs. (86)–(89).

YMO
1 ð1�gÞ ¼ ½2ð1 þ sÞ��1½ðO1 þO2Þ þ ðO3 þO4Þ� ¼ N1ðYVB

1 þYVB
3 Þ ð86Þ

YMO
2 ð1�gÞ ¼ ½2ð1 � sÞ��1½ðO1 þ O2Þ � ðO3 þ O4Þ� ¼ N2ðYVB

1 �YVB
3 Þ ð87Þ

YMO
3 ð3�uÞ ¼ �½2ð1 � s2Þ��1=2½O1 � O2� ¼ �YVB

2 ð88Þ

YMO
6 ð1�uÞ ¼ ½2ð1 � s2Þ��1=2½O3 � O4� ¼ YVB

4 ð89Þ
Now we can compare the spatial wave functions of the 1�g symmetry according to
the VB method and the MO method: the MO method includes the ‘‘ionic struc-
tures’’ as well but with the same weight as the ‘‘covalent structures’’. Apparently
this overestimation of the ‘‘ionic structures’’ is an intrinsic defect of the MO
method that is improved through the configuration interaction.

We have not considered the Hamiltonian so far. The above wave functions are
common for the hydrogen molecule and a joint helium atom with the exception of
the symmetry labels, since the hydrogen molecule spans the point group of sym-
metry D1h whereas the helium atom belongs to the rotational group R3:

Table 5. Molecular integrals in the H2
þ, H2, and H2

�diatomics

Integral Symbol Expression

overlap s ¼ SAB h Að1Þj Bð1Þi
one-center kinetic t0 ¼ TAA h Að1ÞjT̂T1j Að1Þi ¼ h Bð1ÞjT̂T1j Bð1Þi
kinetic t ¼ TAB h Að1ÞjT̂T1j Bð1Þi ¼ h Bð1ÞjT̂T1j Að1Þi
one-center Coulomb 	0 ¼ JAA h Að1ÞjV̂VA1j Að1Þi ¼ h Bð1ÞjV̂VB1j Bð1Þi
one-electron Coulomb 	 ¼ JAB h Að1ÞjV̂VB1j Að1Þi ¼ h Bð1ÞjV̂VA1j Bð1Þi
resonance 
 ¼ KAB h Að1ÞjV̂VB1j Bð1Þi ¼ h Bð1ÞjV̂VA1j Að1Þi

¼ h Að1ÞjV̂VA1j Bð1Þi ¼ h Bð1ÞjV̂VB1j Að1Þi
two-electron Coulomb j ¼ JAABB h Að1Þ Bð2ÞjV̂V12j Að1Þ Bð2Þi
one-center two-electron Coulomb j0 ¼ JAAAA h Að1Þ Að2ÞjV̂V12j Að1Þ Að2Þi
two-electron exchange k ¼ KABAB h Að1Þ Bð2ÞjV̂V12j Að2Þ Bð1Þi
two-electron hybrid h ¼ HABBB h Að1Þ Bð2ÞjV̂V12j Bð2Þ Bð1Þi

¼ h Að1Þ Að2ÞjV̂V12j Að2Þ Bð1Þi
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Molecular Integrals

In treating the H2
þ, H2, and H2

� diatomics the same basis set will be considered: it
consists of two 1s atomic orbitals centered at A and B, respectively. These functions
are contained within expressions for molecular integrals. The full set is listed in Table
5. By using either polar or elliptic coordinates, all these integrals can be expressed as
functions of the orbital exponent a and the internuclear distance R (Table 6).

It can be seen from Fig. 3 that on increasing R all the integrals vanish, and:

a) the overlap integral decreases from the value of 1.0;
b) the kinetic integral decreases from the value of 0.5;

Table 6. Expressions for molecular integrals over 1s atomic orbitals

Integral Unit reduction Reduced integrala

Kinetic TAB ¼ ð�h2=meÞT 0
AB T 0

AB ¼ ða2=2Þe�aRð1 þ aR � a2R2=3Þ
Resonance KAB ¼ �ðe2=4�"0ÞK 0

AB K 0
AB ¼ ð1=RÞe�aRðaR þ a2R2Þ

Coulomb

attraction

JAB ¼ �ðe2=4�"0ÞJ0AB J0AB ¼ ð1=RÞ½1 � e�2aRð1 þ aRÞ�

Overlap SAB ¼ e�aRð1 þ aR þ a2R2=3Þ
2e-Coulomb JAABB ¼ ðe2=4�"0ÞJ0AABB J0AABB ¼ ð1=RÞf1 � e�2c½1 þ ð11=8Þc

þð3=4Þc2 þ ð1=6Þc3�g
2e-hybrid HABBB ¼ ðe2=4�"0ÞH0

ABBB H0
ABBB ¼ ð1=RÞfe�c½ð5=16Þ þ ð1=8Þc þ c2�

�e�3c½ð5=16Þ þ ð1=8Þc�g
2e-exchange KABAB ¼ ðe2=4�"0ÞK 0

ABAB K 0
ABAB ¼ ð1=RÞfe�2c½ð5=8Þc � ð23=20Þc2

�ð3=5Þc3 � ð1=15Þc4� þ ð6=5Þ½ðC0 þ ln cÞS2
c

�2ScS�cE�2c þ S2
�cE�4c�g

with Sx ¼ e�xð1 þ x þ x2=3Þ, Euler constant

C0 ¼ 0:5772156649, integral exponential

function E�x ¼ �
Ð1

x
ðe�t=tÞdt

2e-one-center JAAAA ¼ ðe2=4�"0ÞJ0AAAA J0AAAA ¼ ð5=8Þa
a c ¼ aR; a – orbital exponent, R – internuclear distance

Fig. 3. Molecular integrals as functions of the internuclear distance R; the orbital exponent of 1s

functions is a¼ 1.0; left: one-electron integrals; right: two-electron integrals
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c) the Coulomb attraction integral increases from the value of �1.0;
d) the resonance integral behaves analogously but it increases more rapidly than

the Coulomb integral;
e) the two-electron integrals adopt the same value of (5=8) for R¼ 0. On increas-

ing R, they vanish but with different rate: KABAB more rapidly than HABBB and
this one more rapidly than JAABB. Above R¼ 4a0 the two-center Coulomb inte-
gral behaves practically the same as the 1=R function.

The Chemical Bond in Dihydrogen Cation by the MO Method

The molecular ion H2
þ is the simplest system bound by the chemical bond.

Constituents of the H2
þ are two nuclei (protons A and B) and a single electron

(abbreviated as 1).

The complete molecular Hamiltonian is given by Eq. (90).

Within the Born–Oppenheimer approximation the kinetic energy of the nuclei T̂TA

and T̂TB is omitted.
The number of electron configurations is given by Eq. (91).

n ¼
�

spinorbitals

electrons

�
¼

�
4

1

�
¼ 4 ð91Þ

The trial wave function will be represented by a single molecular spinorbital
(Eq. (92)).

F1ð1Þ ¼ �1ð1Þ ¼ ’þð1Þ	ð1Þ ð92Þ
The two molecular orbitals are expressed in the form of a linear combination of

atomic orbitals (1s functions centered at A and B) (Eq. (93)).

’� ¼ cA A � cB B ð93Þ

The normalization constant is determined as follows (Eq. (94)) so that we have
Eq. (95).

h’� j’� i ¼ N2
� h A � Bj A � Bi ¼ N2

� ð2� 2h Aj biÞ ¼ 1 ð94Þ

N� ¼ ð2� 2SABÞ�1=2 ð95Þ
The atomic orbitals have been normalized (Eq. (96)).

SAA ¼ SBB ¼ 1 ð96Þ
Normally, the combination coefficients should be determined by the linear

variation method, i.e. by solving Eq. (97) where the overlap integrals are given

ĤH ¼ T̂T þ V̂V ¼ jT̂TA þ T̂TBj þ T̂T1 þ V̂VA1 þ V̂VB1 þ V̂VAB ð90Þ
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by Eq. (98) and the matrix elements of the Hamiltonian are described by
Eq. (99). �

HAA � ESAA HAB � ESAB

HAB � ESAB HBB � ESBB

��
cA

cB

�
¼ 0 ð97Þ

SAB ¼ h Aj Bi ð98Þ

HAB ¼ h AjĤHj Bi ð99Þ
However, owing to the symmetry, the coefficients are equivalent, jcAj ¼ jcBj, so
that the two solutions can be written as shown by Eq. (100).

’� ¼ N� ð A � BÞ ¼ ð2� 2SABÞ�1=2ð A � BÞ ð100Þ
Since the wave function is known, the mean value of the molecular energy can be
evaluated as given by Eq. (101).

E � ¼ h’� jĤHj’� i � h	ð1Þj	ð1Þi ¼ N2
� h A � BjT̂T1 þ V̂VA1 þ V̂VB1 þ V̂VABj A � Bi

¼ N2
� ðh AjT̂T1j Ai þ h BjT̂T1j Bi � 2h AjT̂T1j Bi þ h AjV̂VA1j Ai

þ h BjV̂VA1j Bi � 2h AjV̂VA1j Bi
þ h AjV̂VB1j Ai þ h BjV̂VB1j Bi � 2h AjV̂VB1j Bi þ h AjV̂VABj Ai
þ h BjV̂VABj Bi � 2h AjV̂VABj BiÞ ð101Þ

Here we are left with a set of molecular integrals composed of atomic orbitals.
Using a simplified notation for molecular integrals (Table 5), the mean value of the
molecular energy for H2

þ becomes Eq. (102) and making use of the normalization
constant we obtain the following energy expression (Eq. (103)).

E� ¼ 2N2
� ½ðt0 � t þ 	0 þ 	� 2
Þ þ VABð1� sÞ� ð102Þ

E� ¼ VAB þ ðt0 � t þ 	0 þ 	� 2
Þ=ð1� sÞ ð103Þ
When the atomic orbitals in use are eigenfunctions of the hydrogen atom, then the
energy of the free hydrogen atoms is given by Eq. (104) and furthermore Eq. (105)
holds true.

t0 þ 	0 ¼ h AjT̂T1 þ V̂VB1j Ai ¼ E0h Aj Ai ¼ E0 ð104Þ

t þ 
 ¼ h AjT̂T1 þ V̂VB1j Bi ¼ E0h Aj Bi ¼ E0s ð105Þ
Using these assumptions the molecular energy can be simplified to Eq. (106).

E� ¼ E0 þ VAB þ 	� 


1� s
ð106Þ

However, this simplified relationship is not generally valid.
In atomic units, E0=Eh ¼ �1=2 has a constant value and VAB=Eh ¼ 1=R (the

internuclear repulsion) is always positive. The remaining integrals are smooth func-
tions of the internuclear distance and the orbital exponent (a) of the basis set 1s
functions (Table 6).
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On lowering R the molecular energy abbreviated as Eþ passes through a mini-
mum, which means that a stabilization (binding) energy Eb (relative to the energy
of the hydrogen atom E0) is liberated. This amount should be comparable with the
experimental determination of the dissociation energy De. The position of the
energy minimum corresponds to an equilibrium distance R0 (Fig. 4). On the con-
trary, the second solution E� is always increasing which indicates that no chemical
bond is formed in this molecular state. The difference between the energies E�
lies in the sign of the resonance and overlap integrals.

Using the orbital exponent a ¼ 1:0 the calculated molecular energy is Eþ=Eh ¼
�0:565 at R0=a0 ¼ 2:495. These values are much improved when the orbital expo-
nent is subjected to variation (Table 7): the final energy value is not too far from the
experimentally determined value.

The optimum orbital exponent aopt secures not only lowering of the energy but
also satisfaction of the virial theorem. The individual energy terms behave with
varying R as shown in Fig. 4. The optimization of the orbital exponent should be
done individually for each internuclear distance. The virial ratio v ¼ �2 is ob-
tained only at the equilibrium distance R0 when the energy gradient vanishes.

Frequently it is claimed that the chemical bond appears as a result of occur-
rence of the resonance integral. Such an understanding, however, is mistaken. The
physical nature of the chemical bond is given by the virial theorem: an increase in
the kinetic energy accompanied by a decrease of the potential energy. The appear-

Fig. 4. Energy of the H2
þ ion by the MO method; left: dashed – for orbital exponent a¼ 1.0; solid –

a optimized for each R; right: energy terms using a optimized for each R

Table 7. Calculated bonding characteristics for H2
þ

Method Eþ=Eh R0=a0 hTi hVi hVi=hTi

a¼ 1.0 �0.56483 2.495 0.38271 �0.94753 �2.47592

a¼ 1.238 �0.58651 2.003 0.58648 �1.17299 �2.00005

Experiment �0.60263
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ance of the resonance integral originates in the molecular orbital approach and thus
it should be considered as a descriptive parameter only. If a more rigorous ap-
proach is applied the resonance integral can disappear completely but the chemical
bond exists irrespective of appearance of resonance integrals.

The MO Method for the Dihydrogen Molecule

The molecule H2 contains two nuclei (protons A and B) and two electrons (1 and 2).

The complete molecular Hamiltonian is given by Eq. (107).

Within the Born–Oppenheimer approximation the kinetic energy of the nuclei T̂TA

and T̂TB is omitted. The Hamiltonian for the H2 molecule, which is a two-electron
system, can be rewritten as Eq. (108).

ĤH ¼ VAB þ 2ðT̂T1 þ V̂VA1 þ V̂VB1Þ þ V̂V12 ¼ ĥh0 þ ĥhð1Þ þ ĥhð2Þ þ ĝgð1; 2Þ ð108Þ
The two-electron antisymmetrized wave function is constructed in the form of a

spatial part Yð1; 2Þ and a spin part �ðS;MSÞ as explained above (Eq. (109)).

Cð1; 2Þ ¼ Yð1; 2Þ � �ðS;MSÞ ð109Þ
The total molecular wave function is antisymmetric with respect to interchange of
the two electrons.

The molecular energy will be evaluated under four different approximations:

a) within the MO (Molecular Orbital) method,
b) by the CI (Configuration Interaction) applied after the MO method;
c) according to the limited VB (Valence Bond) method that considers only the

‘‘valence structures’’;
d) according to the complete VB method that includes also the ‘‘ionic structures’’.

The MO Method

The construction of the wave function in the MO method follows the following
procedure:

a) In the basis set of 1s atomic orbitals two molecular orbitals can be constructed
via LCAO (Eq. (110)).

’�ðiÞ ¼ ð2� 2SABÞ�1=2½ AðiÞ � BðiÞ� ð110Þ

ĤH ¼ T̂T þ V̂V ¼ jT̂TA þ T̂TBj þ T̂T1 þ T̂T2 þ V̂VA1 þ V̂VB1 þ V̂VA2 þ V̂VB2 þ V̂V12 þ V̂VAB

ð107Þ
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b) By adding the spin functions, the MOs form four molecular spinorbitals:
�1 ¼ ’þ, �2 ¼ �’’þ, �3 ¼ ’�, and �4 ¼ �’’�. Their different occupation by
two electrons defines six electron configurations.

c) Each electron configuration is characterized by a Slater determinant so
that one can construct six determinantal wave functions F1 through F6

(A single Slater determinant guarantees that this is an eigenfunction of
the projections of the orbital and spin angular momenta operators; however,
this is not an eigenfunction of the total angular momentum operators, in
general).

d) The true state vectors jS;MSi, which are the eigenfunctions of the spin operators

ŜS
2

and ŜSz, are given by the eventual linear combinations of Slater determinants
(In fact only the two last determinantal functions need to be linearly combined
to yield the proper molecular-state wave functions).

There are only four distinguishable spatial wave functions in these formulae,
namely:

1. for the ground singlet state 1�gð�2
gÞ, Yþ ¼ Y1ð1�gÞ ¼ ’þð1Þ’þð2Þ which is a

symmetric function;
2. for the excited singlet state 1�gð�2

uÞ, Y� ¼ Y2ð1�gÞ ¼ ’�ð1Þ’�ð2Þ which is a
symmetric function also;

3. for the triplet spin state 3�uð�1
g�

1
uÞ, Y3ð3�uÞ ¼ ½’þð1Þ’�ð2Þ � ’þð2Þ’�ð1Þ�=

ffiffiffi
2

p

which is an antisymmetric function common for the spin multiplet Y3ð3�uÞ ¼
Y4ð3�uÞ ¼ Y5ð3�uÞ;

4. for the singlet state 1�uð�1
g�

1
uÞ, Y6ð1�uÞ ¼ ½’þð1Þ’�ð2Þ þ ’þð2Þ’�ð1Þ�=

ffiffiffi
2

p

which is a symmetric function.

The feature that the spatial part of the ground-state wave function in the MO
method is a combination of the ‘‘valence structures’’ and ‘‘ionic structures’’ with
equal weights will be identified later as the main drawback of the simple MO
method.

The mean value of the molecular energy for the states 1�g is described by
Eq. (111).

E� ð1�gÞ ¼ hC�jĤHjC�i ¼ hY�jĤHjY�ih�j�i
¼ h’�ð1Þ’�ð2ÞjĤHj’�ð1Þ’�ð2Þi ð111Þ

The evaluation in this form is rather tedious since there are 4 (wave function
terms)� 8 (Hamiltonian components)� 4 (wave function terms)¼ 128 terms con-
tributing to the molecular energy. A more transparent derivation is obtained when
the Slater rules for matrix elements are applied. According to the first Slater rule E
is given by Eq. (112).

E ¼ h0 þ
X

i

hii þ
X

i

X
j< i

ðJij � KijÞ ð112Þ

For the ground-state antisymmetrized wave function (a Slater determinant) the
Hamiltonian matrix element, according to the first Slater rule, is described by
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Eq. (113) which is rewritten as Eq. (114).

Eþð1�gÞ ¼ h0 þ h11 þ h22 þ J12 ð114Þ

Here, in addition to one-electron integrals the Coulomb integrals over MOs
appear. The exchange integral between MOs disappears, K12¼ 0, owing to the
orthogonality of the spin functions. The one-electron terms are specified as shown
by Eq. (115).

h11 ¼ h22 ¼ N2
þh Að1Þ þ  Bð1ÞjT̂T1 þ V̂VA1 þ V̂VB1j Að1Þ þ  Bð1Þi

¼ N2
þ½ðTAA þ 2TAB þ TBBÞ þ ðJAA þ 2KAB þ JABÞ þ ðJAB þ 2KAB þ JBBÞ�

¼ ½2t0 þ 2t þ 2	0 þ 2	þ 4
�=ð2� 2sÞ ð115Þ

The Coulomb integral over MOs is expanded as given by Eq. (116) and finally J12

is described by Eq. (117).

J12 ¼ N4
þh½ Að1Þ þ  Bð1Þ�½ Að2Þ þ  Bð2Þ�jV̂V12j½ Að1Þ þ  Bð1Þ�½ Að2Þ þ  Bð2Þ�i

¼ N4
þ½JAAAA þ HAAAB þ HAAAB þ KABAB þ HAAAB þ JAABB þ KABAB þ HAAAB

þ HAAAB þ KABAB þ JAABB þ HAAAB þ KABAB þ HAAAB þ HAAAB þ JAAAA�
¼ ðJAAAA þ JAABB þ 2KABAB þ 4HAAABÞ=½2ð1 þ SABÞ2� ð116Þ

J12 ¼ ðj0 þ j þ 2k þ 4hÞ=½2ð1 þ s2Þ� ð117Þ

In these formulae the two-electron integrals over the basis-set atomic orbitals
occur. The normalization constant was already evaluated as N� ¼ ð2� 2SABÞ�1=2

.
Then, using a simplified notation, the total molecular energies for the two

singlet spin states, E�ð1�gÞ, become expressed as Eq. (118).

E�ð1�gÞ ¼ VAB þ 2
t0 þ 	0 � ðt þ 
Þ

1� s
þ 2

	� 


1� s
þ j0 þ j þ 2k � 4h

2ð1� sÞ2
ð118Þ

Making use of the identities Eqs. (119) and (120), fulfilled for the 1s orbitals (with
a¼ 1) as eigenfunctions of the hydrogen atom, we get a simplification for this
particular case (Eq. (121)).

t0 þ 	 ¼ h Að1ÞjT̂T1 þ V̂VA1j Að1Þi ¼ E0 ð119Þ

t þ 
 ¼ h Að1ÞjT̂T1 þ V̂VB1j Bð1Þi ¼ E0s ð120Þ

E�ð1�gÞ ¼ 2E0 þ VAB þ 2
	� 


1� s
þ j0 þ j þ 2k � 4h

2ð1� sÞ2
ð121Þ

Eþð1�gÞ ¼ h1CþjĤHj1Cþi ¼ h0 þ h’þð1Þjĥhð1Þj’þð1Þi þ h’þð2Þjĥhð2Þj’þð2Þi
þ h’þð1Þ’þð2Þjĝgð1; 2Þj’þð1Þ’þð2Þih	ð1Þj	ð1Þih
ð2Þj
ð2Þi
� h’þð1Þ’þð2Þjĝgð1; 2Þj’þð2Þ’þð1Þih	ð1Þj
ð1Þih	ð2Þj
ð2Þi

ð113Þ
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The one-electron and two-electron integrals over the molecular spinorbitals are
collected in Table 8. They allow evaluation of the energy of the triplet state,
(Eq. (122)), hence yielding Eq. (123).

E3ð3�uÞ ¼ hC3jĤHjC3i ¼ hF3jĤHjF3i
¼ h0 þ h11 þ h33 þ J13 � K13 ¼ h0 þ hgg þ huu þ Jgu � Kgu ð122Þ

E3ð3�uÞ ¼ VAB þ
t0 þ	0 þ ðt þ 
Þ

1 þ s
þ 2

	þ 


1 þ s
þ t0 þ	0 � ðt þ 
Þ

1 � s
þ	� 


1 � s
þ j � k

1 � s2

ð123Þ

Now it is evident that eventual stabilization of the electronic state involves no
two-electron exchange integrals as often claimed erroneously. For the singlet states
the hybrid integral has opposite sign and this integral disappears in the triplet
spin state.

The energy of the remaining singlet state is given through the combination of
Slater determinants (Eq. (124)) and after the application of the Slater rules it
becomes expressed over the molecular spinorbitals as Eq. (125) which simplifies
to Eq. (126).

E6ð1�uÞ ¼ hC6jĤHjC6i ¼
1

2
½hF5 � F6jĤHjF5 � F6i�

¼ 1

2
½hF5jĤHjF5i þ hF6jĤHjF6i � 2hF5jĤHjF6i� ð124Þ

E6ð1�uÞ ¼ h0 þ hgg þ huu þ Jgu þ Kgu ð126Þ

The expansion into the basis set of the atomic orbitals yields finally Eq. (127).

E6ð1�uÞ ¼ VAB þ t0 þ 	0 þ ðt þ 
Þ
1 þ s

þ 	þ 


1 þ s
þ t0 þ 	0 � ðt þ 
Þ

1 � s
þ 	� 


1 � s
þ j0 � k

1 � s2

ð127Þ

Table 8. Expressions for the integrals over the molecular spinorbitalsa

One-electron integrals Two-electron integrals

hgg ¼ h11 ¼ h22 ¼ ½t0 þ 	0 þ 	þ ðt þ 2
Þ�=ð1 þ sÞ Jgg ¼ J12 ¼ ½ j0 þ j þ 2k þ 4h�=½2ð1 þ sÞ2�
huu ¼ h33 ¼ h44 ¼ ½t0 þ 	0 þ 	� ðt þ 2
Þ�=ð1 � sÞ Juu ¼ J34 ¼ ½ j0 þ j þ 2k � 4h�=½2ð1 � sÞ2�

Jgu ¼ J13 ¼ J23 ¼ ½j0 þ j � 2k�=½2ð1 � s2Þ�
Kgu ¼ K13 ¼ ½ j0 � j�=½2ð1 � s2Þ�

a The spinorbitals are labeled according to �1 ¼ ’þ; �2 ¼ �’’þ; �3 ¼ ’�; �4 ¼ �’’�

E6ð1�uÞ ¼
1

2
½ðh0 þ h22 þ h33 þ J23Þ þ ðh0 þ h11 þ h44 þ J14Þ

� 2ðh23jĝgj14ih
j	ih	j
i � h23jĝgj41ih
j
ih	j	iÞ� ð125Þ
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Having the molecular integrals at our disposal makes the plot of the molecular
energy possible (Fig. 5). The calculated bonding characteristics are collected in
Table 9. In can be seen that although the MO wave functions describe the chemical
bond qualitatively well, they behave incorrectly at the dissociation limit (Eq. (128)),
i.e., the energy of separated atoms is erroneously higher by j0=2 ¼ ð5=16Þa in
units of Eh.

lim
R!1

Eþð1�gÞ ¼ 2E0 þ j0=2 ð128Þ

Configuration Interaction

The configuration interaction (CI method) mixes the Slater determinants of the same
symmetry. In the minimum basis set of 1s functions we have two electron config-
urations, 1�g

2 and 1�u
2, of the same symmetry 1�g. A more flexible wave function is

a linear combination of the corresponding Slater determinants (Eq. (129)).

CCIð1; 2Þ ¼ C1 �1CMO
þ þ C2 �1CMO

� ð129Þ

Fig. 5. Energy of the lowest molecular states by the simple MO method; orbital exponent a¼ 1.0; an

asterisk indicates an improper limiting behaviour; right: energy of the molecular 1�g states by the

MOþCI method; orbital exponent a¼ 1.0; dashed – simple MO, solid – MOþCI

Table 9. Calculated bonding characteristics for H2 molecule by the MO method

Method E0=Eh R0=a0 hVi=hTi

1. MO a ¼ 1.0 �1.09908 1.602 �2.37954

aopt ¼1.193 �1.12823 1.385 �1.99674

2. MOþCI a ¼ 1.0 �1.11865 1.670

aopt ¼1.194 �1.14794 1.430

3. Experimental �1.17447 1.401
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Application of the variation method implies the fulfillment of the secular Eq. (130)

det

�
H11 � E H12 � ES12

H12 � ES12 H22 � E

�
¼ 0 ð130Þ

Since the respective Slater determinants are orthogonal, S12¼ 0 holds true. Thus an
explicit solution of the quadratic Eq. (131) exists (Eq. (132)).

ðH11 � EÞðH22 � EÞ � H2
12 ¼ 0 ð131Þ

Ea;b ¼ ðH11 þ H22Þ=2�f½ðH11 � H22Þ=2�2 þ H2
12g

1=2 ð132Þ

The diagonal matrix elements of the Hamiltonian are H11¼1 Eþ and H22¼1 E�. In
evaluating the off-diagonal matrix element H12 the Slater rules are helpful. Since
the two Slater determinants differ in two pairs of spin-orbitals, the one-electron
term vanishes and the only non-zero contribution is given by the electron repulsion
(Eq. (133)) which becomes Eq. (134).

H12 ¼ h1CþjĤHj1C�i ¼ h’þð1Þ’þð2ÞjV̂V12j’�ð1Þ’�ð2Þi
¼ N2

þN2
�h Að1Þ Bð2Þ þ  Bð1Þ Að2Þ þ  Að1Þ Að2Þ

þ  Bð1Þ Bð2ÞjV̂V12j Að1Þ Bð2Þ
þ  Bð1Þ Að2Þ �  Að1Þ Að2Þ �  Bð1Þ Bð2Þi ð133Þ

H12 ¼ ½2ð1 þ sÞ2ð1 � sÞ��1

� ½ j þ k þ h þ h þ k þ j þ h þ h � ðh þ h þ j0 þ k þ h þ h þ k þ j0Þ�
¼ ð j � j0Þ=½2ð1 � s2Þ� ð134Þ

In the limit of infinite internuclear distance we obtain Eq. (135) and the roots of the
secular equation are shown by Eq. (136).

lim
R!1

H12 ¼ �j0=2 ð135Þ

ECI
a;bðR ! 1Þ ¼ ð2E0 þ j0=2Þ � j j0=2j ð136Þ

The lower energy solution is given by Eq. (137) whereas the higher energy solution
is described by Eq. (138) and now they behave correctly in the limit of infinite
internuclear separation. As a correct limiting behaviour of the energy on the dis-
sociation is obtained, the configuration interaction removes the intrinsic defects of
the MO method (of the one-electron approximation).

ECI
a ðR ! 1Þ ¼ 2E0 ð137Þ

ECI
b ðR ! 1Þ ¼ 2E0 þ j0 ð138Þ

The quantitative results obtained by the MOþCI method are involved in Table 9
and visualized in Fig. 5. The molecular states Eð3�uÞ and Eð1�uÞ are unaffected by
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the CI method since they have no symmetry-matching counterpart within the mini-
mum basis set of the 1s functions.

The survey of the MO formulae is presented in Table 10.

Amplitudes of Molecular Orbitals

The molecular orbitals are completely known in the form of Eq. (139).

’�ðiÞ ¼ ð2� 2SABÞ�1=2½ AðiÞ � BðiÞ� ð139Þ
The 1s functions being described by Eqs. (140) and (141) and the overlap integral
is a function of c ¼ aRAB, namely SAB ¼ e�cð1 þ c þ c2=3Þ.

 AðiÞ ¼ ða3=�Þ1=2
e�arAi ð140Þ

 BðiÞ ¼ ða3=�Þ1=2
e�arBi ð141Þ

This information is sufficient in constructing and visualisation of the ampli-
tudes of molecular orbitals.

Since the whole molecule has a cylindrical shape the problem can be visualized
in cylindrical coordinates (Fig. 6). These are defined by three variables: the radius

Table 10. Survey of the MO formulae for the H2 molecule

Molecular orbitals (LCAO) ’gðiÞ ¼ ð2 þ 2sÞ�1=2½ AðiÞ þ  BðiÞ�
’uðiÞ ¼ ð2 � 2sÞ�1=2½ AðiÞ �  BðiÞ�

Energies in terms of MO

and AO integrals

E1 ¼ VAB þ 2hgg þ Jgg

¼ 2
t0 þ 	0 þ ðt þ 
Þ

1 þ s
þ 2

	þ 


1 þ s
þ j0 þ j þ 2k þ 4h

2ð1 þ sÞ2

E2 ¼ VAB þ 2huu þ Juu

¼ 2
t0 þ 	0 � ðt þ 
Þ

1 � s
þ 2

	� 


1 � s
þ j0 þ j þ 2k � 4h

2ð1 � sÞ2

E3 ¼ VAB þ hgg þ huu þ Jgu � Kgu

¼ t0 þ 	0 þ t þ 


1 þ s
þ 	þ 


1 þ s
þ t0 þ 	0 � ðt þ 
Þ

1 � s

þ	� 


1 � s
þ j � k

ð1 þ sÞð1 � sÞ

E6 ¼ VAB þ hgg þ huu þ Jgu þ Kgu

¼ t0 þ 	0 þ t þ 


1 þ s
þ 	þ 


1 þ s
þ t0 þ 	0 � ðt þ 
Þ

1 � s

þ	� 


1 � s
þ j0 � k

ð1 þ sÞð1 � sÞ

Interaction matrix elements Hij ¼ hYijĤHjYji; H12 ¼ Kgu ¼ j0 � j

2ð1 � s2Þ; S12 ¼ 0

Today’s View of the Chemical Bond 905



u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
varies from u ¼ 0 to 1; the angle of rotation � ¼ 0 to 2�; the

height of the cylinder ranges between z ¼ �1 and þ1. The volume element is
dV ¼ udu dz d�. The usual normalization in spherical coordinates yields Eq. (142)
where the factor 4� arises from integration over the polar angles #1 and �1. Now
the following normalization holds true in cylindrical coordinates (Eq. (143)) where
the factor 2� results from integration over the remaining coordinate �1.

I ¼
ð

V

½ Aðr1; #1; �1Þ�2 dV ¼ ða3=�Þð4�Þ
ð1

r1¼0

expð�2ar1Þr2
1 dr1 ¼ 1 ð142Þ

I ¼ ða3=�Þ1=2ð2�Þ
ðþ1

z1¼�1

ð1
u1¼0

expf�2a½u2
1 þ ðz1 � zAÞ2�1=2g u1du1 dz1 ¼ 1

ð143Þ
The cylindrical coordinates are probably not suitable for analytic integration.

However, a numerical integration in cylindrical coordinates causes no problem.
One should define a dense network of grids: the coordinate z ranges from �rmax

to þrmax by a small step Dz; the coordinate u varies from 0 to þrmax by a step Du.
The semi-integral of the function Fðu; zÞ can be integrated as a sum multiplied by
the step (Eq. (144)) and the full integral becomes Eq. (145).

FðzÞ ¼
ð1

u¼0

Fðu; zÞ u du

ð2�

0

d� ¼ ð2�ÞðDuÞ �
Xþrmax

ui¼0

Fðui; zjÞ ui ð144Þ

F ¼
ðþ1

z¼�1
FðzÞ dz ¼ ðDzÞ �

Xþrmax

zj¼�rmax

FðzjÞ ð145Þ

The molecular orbitals are the one-electron wave functions (common for
H2

þ, H2, and H2
� systems), which can be displayed along the z-coordinate pass-

ing through the atomic nuclei A–B. We need to set the internuclear distance (say
RAB ¼ 1:4a0) and the radius of the plot rmax. Then the center of the molecule is
set to zero, the position of the first center is at zA ¼ �RAB=2 and that of the
second center at zB ¼ þRAB=2. The electron coordinate z1 ranges from �rmax

to þrmax.
In the cylindrical coordinate system the atomic orbitals become expressed as

shown by Eqs. (146) and (147).

 A ¼ ða3=�Þ1=2
expf�a½u2

1 þ ðz1 � zAÞ2�1=2g ð146Þ

 B ¼ ða3=�Þ1=2
expf�a½u2

1 þ ðz1 � zBÞ2�1=2g ð147Þ

Fig. 6. Definition of the cylindrical coordinates
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The addition and/or subtraction of atomic orbitals along with the proper normal-
ization constant N� reveals the amplitudes of molecular orbitals (Eq. (148)).

’�ðz1Þ ¼ ½ Aðz1Þ � Bðz1Þ�N�¼ ½ Aðz1Þ � Bðz1Þ�ð2� 2SABÞ�1=2 ð148Þ

The amplitudes of molecular orbitals are visualized in Fig. 7. It can be seen that
the bonding molecular orbital possesses an amplitude increase in the internuclear
region. Unlikely, the antibonding molecular orbital alters the sign just in the center
of the molecule where its amplitude vanishes.

The true difference between MOs of H2
þ, H2, and H2

� systems appears as an
effect of different orbital exponent (the scaling factor) a, and a different equilib-
rium internuclear distance RAB in these systems.

The probability of finding the electron in the volume element dV1 is given by
Eq. (149).

P� ¼ j’ � ðx1; y1; z1Þj2 dV1 ¼ j’ � ðz1; u1; �1Þj2 u1du1 dz1 d�1 ð149Þ

In generating the probability functions for the MOs we have Eq. (150).

P�ðu1; z1; �1Þ ¼ j’�ðu1; z1; �1Þj2 dV1 ¼ N2
� ½ Aðu1; z1; �1Þ � Bðu1; z1; �1Þ�2 dV1

ð150Þ

Let us introduce the atomic charge density (Eq. (151)) which can be semi-integrated
along the coordinate �1 to give Eq. (152) as well as along the coordinate u1 to yield
Eq. (153) or fully integrated to give Eq. (154).

Pch
A ðu1; z1; �1Þ ¼ ½ Aðu1; z1; �1Þ�2 u1du1 dz1 d�1

¼ ða3=�Þ expf�2a½u2
1 þ ðz1 � zAÞ2�1=2g u1du1 dz1 d�1 ð151Þ

Pch
A ðz1; u1Þ ¼ ða3=�Þð2�Þ expf�2a½u2

1 þ ðz1 � zAÞ2�1=2g u1du1 dz1 ð152Þ

Fig. 7. Amplidutes of atomic 1s orbitals (left) and molecular orbitals (right) in H2 molecule along

the internuclear linkage (u¼ 0, � – arbitrary)
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Pch
A ðz1Þ ¼ ða3=�Þð2�Þ

� ð1
u1¼0

expf�2a½u2
1 þ ðz1 � zAÞ2�1=2g u1du1

�
dz1 ð153Þ

Pch
A ¼

ðþ1

z1¼�1
Pch

A ðz1Þ dz1 ¼ 1 ð154Þ

Analogous expressions hold true for Pch
B ðu1; z1; �1Þ, Pch

B ðu1; z1Þ, Pch
B ðz1Þ, and

Pch
B ¼ 1. The overlap density is introduced as shown by Eq. (155) and it is semi-

integrated to yield Eqs. (156) and (157).

Pov
ABðu1; z1; �1Þ ¼  Aðu1; z1; �1Þ Bðu1; z1; �1Þ u1du1 dz1 d�1 ð155Þ

Pov
ABðu1; z1Þ ¼ ða3=�Þð2�Þ expf�a½u2

1 þ ðz1 � zAÞ2�1=2g
� expf�a½u2

1 þ ðz1 � zBÞ2�1=2g u1du1 dz1 ð156Þ

Pov
ABðz1Þ ¼ ða3=�Þð2�Þ

� ð1
u1¼0

expf�a½u2
1 þ ðz1 � zAÞ2�1=2g

� expf�a½u2
1 þ ðz1 � zBÞ2�1=2g u1du1

�
dz1 ð157Þ

The complete integral done numerically should converge to the value of the
overlap integral (Eq. (158)).

Pov
AB ¼

ðþ1

z1¼�1
Pov

ABðz1Þ dz1 ¼ SAB ¼ f ða;RÞ ð158Þ

The charge density and the overlap density functions are plotted in Fig. 8.
It can be seen that the charge density Pch

A ðz1; u1Þ exhibits a maximum at the
position of the atomic nucleus (z1¼ �R=2) and 1 bohr apart from the nucleus
ðu1=a0 ¼ 1:0Þ. The charge density at the nucleus is exactly zero: Pch

A ðz1¼ �R=2;
u1 ¼ 0Þ ¼ 0. This quantity matches the monoatomic density function when placed
at the position fz1¼ �R=2; u1¼ 0; �1 ¼ 0g. A similar property exhibits the second
charge density Pch

B ðz1; u1Þ. The overlap density is a constant in the internuclear
region and escapes progressively outside the nuclei.

Fig. 8. The charge and overlap densities, Pch
A ðz1; u1Þ, Pov

ABðz1; u1Þ, and Pch
B ðz1; u1Þ, in the H2 molecule

semi-integrated over the angle �1
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The MO probability functions can be rewritten into the semi-integrated form
(Eq. (159)) and they are displayed in Fig. 9. Analogously, Eq. (160) is obtained.

P�ðz1; u1Þ ¼ ½Pch
A ðz1; u1Þ þ Pch

B ðz1; u1Þ �Pov
ABðz1; u1Þ�=½2ð1� SABÞ� ð159Þ

P�ðz1Þ ¼ ½Pch
A ðz1Þ þ Pch

B ðz1Þ �Pov
ABðz1Þ�=½2ð1� SABÞ� ð160Þ

Fig. 9. The MO probability functions, Pþðz1; u1Þ and P�ðz1; u1Þ, in the H2 molecule semi-integrated

over the angle �1

Fig. 10. Semi-integrated atomic and molecular probability functions; left – atomic orbital prob-

abilities for two isolated H atoms placed at the positions � 0:7a0 (area under the solid and dashed

functions equals to 1.0); the overlap probability function – dotted; right – molecular orbital

probabilities for H2 molecule with internuclear separation 1:4a0; solid – for bonding MO,

dashed – for antibonding MO
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The individual monoatomic components Pch
A ðz1Þ, Pch

B ðz1Þ, and the diatomic Pov
ABðz1Þ

component are shown in Fig. 10 – left. The MO probability functions P�ðz1Þ are
displayed in Fig. 10 – right.

Amplitudes of State Functions

The molecular state (wave) functions in the H2 molecule depend upon the coordi-
nates of two electrons, so that we need to map the two-dimensional functions
Yðr1; r2Þ. Let us recapitulate the expressions for the spatial parts of the molecular
wave functions (state functions) (Eqs. (161)–(164)).

Y1f1�gð�2
gÞg ¼ ’þðr1Þ’þðr2Þ ð161Þ

Y2f1�gð�2
uÞg ¼ ’�ðr1Þ’�ðr2Þ ð162Þ

Y3f3�uð�"g�"uÞg ¼ ½’þðr1Þ’�ðr2Þ � ’þðr2Þ’�ðr1Þ�=
ffiffiffi
2

p
ð163Þ

Y6f1�uð�#g�"u; �"g�#uÞg ¼ ½’þðr1Þ’�ðr2Þ þ ’þðr2Þ’�ðr1Þ�=
ffiffiffi
2

p
ð164Þ

Using the results of the previous paragraph we can start mapping these functions in
one dimension, Yðz1; z2 ¼ z1Þ. This is permitted for electrons having opposite spin
(electron correlation is not included in the MO method). The results are visualized
in Fig. 11.

It can be seen that the ground state 1�gð�2
gÞ, in which two electrons of an

opposite spin occupy the bonding molecular orbital, is bonding in nature: there
exists a concentration of electron charge density in the internuclear region. The
excited state 1�gð�2

uÞ, in which two electrons occupy the antibonding MO, is
antibonding at the internuclear distance of RAB ¼ 1:4a0. Analogously, the excited

state 1�uð�"g�#u;�"u�#gÞ is antibonding; the subscript u means that the wave function

is an odd function of space coordinates and thus alters its sign at the center of

Fig. 11. The amplitude of the wave function for H2 along the coordinate z1 ¼ z2 (u ¼ � ¼ 0):

solid – 1�gð�2
gÞ; dashed – 1�gð�2

uÞ; dotted – 1�uð�"g�#u;�"u�#gÞ; zero – 3�u
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the molecule. The last wave function 3�uð�"g�"uÞ vanishes exactly along the path
Yðz1; z2 ¼ z1Þ in accordance with the Pauli principle: the occurrence of two elec-
trons having the same spin at the same point in space is not allowed.

Changing to a three-dimensional graphic brings more information about the
properties of the molecular wave functions. The wave functions are mapped as
Yðz1; z2Þ for u1 ¼ u2 ¼ �1 ¼ �2 ¼ 0 and displayed in Fig. 12.

The wave function of the ground state 1�gð�2
gÞ is symmetric with respect to the

interchange of coordinates of electrons: Y1ðz1; z2Þ ¼ Y1ðz2; z1Þ. Its cross-section

Fig. 12. Amplitudes of the wave functions for H2 along the z-coordinates of two electrons according

to the MO method
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for z1 ¼ z2 is identical with the function displayed in Fig. 11. The required anti-
symmetry of the total molecular wave function is provided by its spin part. The
same symmetry properties exhibit the remaining spatial wave functions for the
singlet states. On the contrary, the spatial wave function for the triplet state is
antisymmetric with respect to the electron coordinate: Y3ðz1; z2Þ ¼ �Y3ðz2; z1Þ.
The corresponding spin function is symmetric.

The MO Method for the Dihydrogen Anion

The molecular ion H2
� contains two nuclei (A and B) and three electrons (1 to 3).

Its Hamiltonian is written as follows (Eq. (165)).

ĤH ¼ V̂VAB þ
X3

i¼1

T̂Ti þ
X3

i¼1

X2

A¼1

V̂ViA þ
X3

i¼1

X3

j> i

V̂Vij

¼ ĥh0 þ ĥh1 þ ĥh2 þ ĥh3 þ V̂V12 þ V̂V13 þ V̂V23 ð165Þ

The number of electron configurations is given by the formula n ¼
�

4
3

�
¼ 4. The

three-electron wave function is constructed in the form of a Slater determinant
containing three occupied molecular spinorbitals (Eq. (166)) where only two molec-
ular orbitals, ’1 and ’2, are involved.

C1ð1; 2; 3Þ ¼ ÂAf’1ð1Þ	ð1Þ � ’1ð2Þ
ð2Þ � ’2ð3Þ	ð3Þg ð166Þ
These are constructed via LCAO of a pair of 1s basis set functions and they

have the symmetry �g and �u, respectively (Eqs. (167) and (168)).

’1ð�gÞ ¼ N1ð A þ  BÞ ¼ ð2 þ 2SABÞ�1=2ð A þ  BÞ ð167Þ

’2ð�uÞ ¼ N2ð A �  BÞ ¼ ð2 � 2SABÞ�1=2ð A �  BÞ ð168Þ

The symmetry of the ground-state wave function C1 is 2�u and for the excited-
state wave function C2 it is 2�g (see Fig. 13). Each wave function is (spin) doubly
degenerate. The symmetry of the ground-state wave function follows from the
direct products of the irreducible representations of the molecular spinorbitals
contained in the electron configuration �� �� � ¼ �. For the ground state there
is �2

g�
1
u and therefore g � g � u ¼ u. The electron configuration of the first excited

state is �1
g�

2
u and thus g � u � u ¼ g.

Fig. 13. Four electron configurations of the H2
� system
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The Slater rules can be used for the expression of the total molecular energy
(Eq. (169)) where �i is the spin function (	 or 
) for the i-th molecular orbital ’i.
Using this formula the energy of the electron configuration �1

g�
2
u is given by

Eq. (170) and for the electron configuration �1
g�

2
u by Eq. (171).

E ¼ h0 þ
X3

i¼1

h’ið1Þjĥh1j’ið1Þi þ
X3

i¼1

X3

j> i

½h’ið1Þ’jð2Þjĝg12j’ið1Þ’jð2Þi

� h’ið1Þ’jð2Þjĝg12j’ið2Þ’jð1Þih�ið1Þj�jð1Þih�ið1Þj�jð1Þi�

¼ h0 þ
X3

i¼1

hii þ
X3

i¼1

X3

j< i

ðJij � Kij�si;sjÞ ð169Þ

The one-electron and the relevant two-electron integrals among molecular or-
bitals we already met in the problem of the H2 molecule. Thus the final energy
formulae become Eqs. (172) and (173)

E1ð2�uÞ ¼ VAB

þ 2
t0 þ 	0 þ ðt þ 
Þ

1 þ s
þ 2

	þ 


1 þ s
þ t0 þ 	0 � ðt þ 
Þ

1 � s
þ 	� 


1 � s

þ j0 þ j þ 2k þ 4h

2ð1 þ sÞ2
þ 2

j0 þ j � 2k

2ð1 þ sÞð1 � sÞ �
j0 � j

2ð1 þ sÞð1 � sÞ ð172Þ

Fig. 14. Energy of lowest states for H2
� by the MO method

E1ð2�uÞ ¼ h0 þ h11 þ h22 þ h33 þ J12 � K12h	j
ih	j
i
þ J13 � K13h	j	ih	j	i þ J23 � K23h
j	ih	j
i

¼ h0 þ 2h11 þ h33 þ J12 þ 2J13 � K13 ð170Þ

E2ð2�gÞ ¼ h0 þ h11 þ h33 þ h44 þ J13 � K13h	j	ih	j	i
þ J14 � K14h	j
ih
j	i þ J34 � K34h	j
ih
j	i

¼ h0 þ h11 þ 2h33 þ 2J13 � K13 þ J34 ð171Þ
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E2ð2�gÞ ¼ VAB

þ t0 þ 	0 þ ðt þ 
Þ
1 þ s

þ 	þ 


1 þ s
þ 2

t0 þ 	0 � ðt þ 
Þ
1 � s

þ 2
	� 


1 � s

þ j0 þ j þ 2k � 4h

2ð1 � sÞ2
þ 2

j0 þ j � 2k

2ð1 þ sÞð1 � sÞ �
j0 � j

2ð1 þ sÞð1 � sÞ ð173Þ

The plot of energies E1 and E2 as functions of the internuclear distance is shown in
Fig. 14 and the calculated equilibrium data are listed in Table 11.

The VB Method for the Dihydrogen Molecule

Limited VB Method

Within the valence bond method the spatial part of the electronic wave function is
approximated by the linear combination of two product functions (Eq. (174))
where each of them is represented by a ‘‘covalent structure’’ describing the ground
state of the hydrogen atom (Eqs. (175) and (176)).

Yð1; 2Þ ¼ C1O1 þ C2O2 ð174Þ

O1 ¼  Að1Þ Bð2Þ ð175Þ

O2 ¼  Að2Þ Bð1Þ ð176Þ
The coefficients C1 and C2 can be determined by the linear variation method.
However, the product function F1 and F2 should be equivalent (as an effect of
the symmetry) and thus jC1j ¼ jC2j holds true. For the spatial part of the VB
functions Eqs. (177) and (178) can be directly written where the overlap integral
of atomic orbitals is SAB � h Að1Þj Bð1Þi. The normalization constant is to be
determined from hY� jY� i ¼ 1 yielding N� ¼ ½2ð1� S2

ABÞ�
�1=2

.

Yþ � Y1ð1�gÞ ¼ NþðO1 þ O2Þ ¼ ½2ð1 þ S2
ABÞ�

�1=2ðO1 þ O2Þ ð177Þ

Y� � Y2ð3�uÞ ¼ N�ðO1 � O2Þ ¼ ½2ð1 � S2
ABÞ�

�1=2ðO1 � O2Þ ð178Þ
The mean value of the total energy is given by Eq. (179).

E� ¼ hC� jĤHjC�i ¼ hY� jĤHjY�ih�j�i ¼ ½2ð1� S2
ABÞ�

�1hO1 �O2jĤHjO1 �O2i
¼ ½2ð1� S2

ABÞ�
�1½hO1jĤHjO1i þ hO2jĤHjO2i � 2hO1jĤHjO2i�

¼ ð1� S2
ABÞ

�1½h Að1Þ Bð2ÞjĤHj Að1Þ Bð2Þi � h Að1Þ Bð2ÞjĤHj Að2Þ Bð1Þi�
ð179Þ

Table 11. Calculated bonding characteristics for H2
� ion by the MO method

Method E0=Eh R0=a0 hVi=hTi

MO a¼ 1.0 �0.91760 3.365 �1.62088

aopt ¼0.796 �0.97411 3.472 �1.99985
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Using the explicit form of the Hamiltonian we have Eq. (180) and these 16 terms
are rewritten as shown by Eq. (181).

E� ¼ ð1� S2
ABÞ

�1½h Að1Þ Bð2ÞjT̂T1 þ T̂T2 þ V̂VA1 þ V̂VA2 þ V̂VB1 þ V̂VB2 þ V̂V12

þ V̂VABj Að1Þ Bð2Þi
� h Að1Þ Bð2ÞjT̂T1 þ T̂T2 þ V̂VA1 þ V̂VA2 þ V̂VB1 þ V̂VB2 þ V̂V12 þ V̂VABj Að2Þ Bð1Þi�

ð180Þ

E� ¼ ð1� S2
ABÞ

�1½TAASBB þ TBBSAA þ JAASBB þ JABSAA þ JABSBB þ JBBSAA

þ JAABB þ VABSAASBB � ð2TABSAB þ 4KABSAB þ KABAB þ VABS2
ABÞ�

ð181Þ
The energy formula becomes more transparent when the simplified notation is used
for the molecular integrals according to Table 5 (Eq. (182)).

E� ¼ VAB þ ½2ðt0 þ 	0Þ � 2ðt þ 
Þs� þ 2ð	� 
sÞ þ j� k

1� s2
ð182Þ

If we apply exactly the hydrogen atom 1s orbitals (with the orbital exponent a ¼ 1)
then the following identities are fulfilled (Eqs. (183) and (184)).

t0 þ 	 ¼ h Að1ÞjT̂T1 þ V̂VA1j Að1Þi ¼ E0 ð183Þ

t þ 
 ¼ h Að1ÞjT̂T1 þ V̂VB1j Bð1Þi ¼ E0s ð184Þ
Consequently the energies of the two molecular states simplify to Eq. (185).

E� ¼ 2E0 þ VAB þ 2ð	� 
sÞ þ j� k

1� s2
ð185Þ

Having the molecular integrals at our disposal, the plot of the molecular energy
is possible (Fig. 15). On lowering R the molecular energy Eþ passes through a

Fig. 15. Left: energy of the H2 molecule by the LVB method; dashed – orbital exponent a¼ 1.0,

solid – a optimized for each R; right: comparison of the LVB (dashed) and CVB methods for H2;

a¼ 1, solid – Eað1�gÞ and Ecð1�gÞ states according to the CVB method
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minimum that corresponds to the equilibrium state. The second solution E�, on
the contrary, describes a non-bonding state whose energy is always above 2E0 ¼
�Eh. The two solutions differ from each other in the sign of the 
, k, and s integrals
in the energy formula.

The calculated bonding characteristics are collected in Table 12. It can be seen
that the variation of the orbital exponent leads to lowering of the energy and also
satisfies the virial theorem at the equilibrium distance. The existence of the chem-
ical bond, however, is determined by the increase of the kinetic energy and
decrease of the potential energy, as it follows from the virial theorem. It is not
associated with the presence of the resonance and exchange integrals.

Complete VB Method

The VB method can be improved by including more terms, i.e. ‘‘structures’’ into the
molecular wave function. Within the basis set of 1s functions, in addition to ‘‘covalent
structures’’, also the ‘‘ionic structures’’ can be considered (Eqs. (186) and (187)).

O3 ¼  Að1Þ Að2Þ ð186Þ

O4 ¼  Bð1Þ Bð2Þ ð187Þ
The ionic structures refer to a situation when both electrons would be situated on
one atom. The molecular wave function is more flexible as it is expanded over four
product functions (Eq. (188)).

Yð1; 2Þ ¼ C1O1 þ C2O2 þ C3O3 þ C4O4 ð188Þ
The linear variation method implies that the following secular Eq. (189) is to be
obeyed.

det

h11 � E h12 � Es2 h13 � Es h13 � Es

h12 � Es2 h11 � E h13 � Es h13 � Es

h13 � Es h13 � Es h33 � E h34 � Es2

h13 � Es h13 � Es h34 � Es2 h33 � E

0
BB@

1
CCA ¼ 0 ð189Þ

Using the symmetry considerations, according to which jC1j ¼ jC2j and jC3j ¼ jC4j,
it can be rewritten as Eq. (190) where only one independent parameter � occurs.

Yð1; 2Þ ¼ N½ðO1 þ O2Þ þ �ðO3 þ O4Þ�
¼ Nf½ Að1Þ Bð2Þ þ  Bð1Þ Að2Þ� þ �½ Að1Þ Að2Þ þ  Bð1Þ Bð2Þ�g

ð190Þ

Table 12. Calculated bonding characteristics for H2 molecule

Method E0=Eh R0=a0 hVi=hTi

1. LVB a¼ 1.0 �1.11597 1.644 �2.33216

aopt ¼ 1.166 �1.13908 1.415 �2.00022

2. CVB a¼ 1.0 �1.11865 1.669

aopt ¼1.195 �1.14794 1.430

3. Experimental �1.17447 1.401
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Because of the symmetry arguments, only Yað1�gÞ and Ycð1�gÞ arise from the
mixing of the configurations (Eqs. (191)–(194)).

Yað1�gÞ ¼ Na½ðO1 þ O2Þ þ �aðO3 þ O4Þ� ð191Þ

Ybð3�uÞ ¼ Y2ð3�uÞ ¼ NbðO1 � O2Þ ¼ ðO1 � O2Þ½2ð1 � s2Þ��1=2 ð192Þ

Ycð1�gÞ ¼ Nc½ðO1 þ O2Þ þ �cðO3 þ O4Þ� ð193Þ

Ydð1�uÞ ¼ Y4ð1�uÞ ¼ Nc½ðO3 � O4Þ� ¼ ðO3 � O4Þ½2ð1 � s2Þ��1=2 ð194Þ
The constant N can be determined from the normalization condition.

The matrix elements h11, h22, and h12 are already known from the LVB;
the remaining matrix elements among the product functions are given by
Eqs. (195)–(197).

h33 ¼ hO3jĤHjO3i ¼ hO4jĤHjO4i ¼ 2ðt0 þ 	0Þ þ 2	þ j0 þ VAB ð195Þ

h34 ¼ hO3jĤHjO4i ¼ 2ts þ 4
s þ k þ VABs2 ð196Þ

h13 ¼ hO1jĤHjO3i ¼ hO2jĤHjO3i ¼ hO1jĤHjO4i ¼ hO2jĤHjO4i
¼ 2ðt0 þ 	0Þs þ t þ 
 þ 	s þ 
 þ h þ VABs ð197Þ

A truncated problem within the ‘‘ionic structures’’ (Eq. (198)) has the solutions
shown by Eq. (199) and explicitly by Eq. (200).

det
h33 � E h34 � Es2

h34 � Es2 h33 � E

� �
¼ 0 ð198Þ

E3;4 ¼ h33 � h34

1� s2
ð199Þ

E3ð1�gÞ ¼ VAB þ 2
t0 þ 	0 þ ðt þ 
Þs

1 þ s2
þ 2	þ j0 þ 2
s þ k

1 þ s2
ð200Þ

E4ð1�uÞ ¼ VAB þ 2
t0 þ 	0 � ðt þ 
Þs

1 � s2
þ 2	þ j0 � 2
s � k

1 � s2
ð201Þ

Then the energy separation of the two 1�g states before their ‘‘interaction’’ or
mixing is given by Eq. (202).

D ¼ E3 � E1 ¼ j0 � j

1 þ s2
>0 ð202Þ

The off-diagonal matrix element connecting these states can be evaluated with the
help of the wave functions (Eqs. (203) and (204)) as follows from Eq. (205) and the
non-orthogonality integral is given by Eq. (206).

Y1ð1�gÞ ¼ ðO1 þ O2Þ½2ð1 þ s2Þ��1=2 ð203Þ

Y3ð1�gÞ ¼ ðO3 þ O4Þ½2ð1 þ s2Þ��1=2 ð204Þ
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H13 ¼ hY1jĤHjY3i ¼ 4h13½2ð1 þ s2Þ��1 ð205Þ

S13 ¼ hY1jY3i ¼ 4s½2ð1 þ s2Þ��1 ð206Þ
The secular equation in the new basis set of the symmetry adapted VB-func-

tions Y1, Y2, Y3, and Y4 is shown by Eq. (207) and hence the quadratic Eq. (208)
determines the two energies of the 1�g states (Eq. (209)).

det

E1 � E 0 H13 � S13E 0

0 E2 � E 0 0

H13 � S13E 0 E3 � E 0

0 0 0 E4 � E

0
BB@

1
CCA ¼ 0 ð207Þ

ðE1 � EÞðE3 � EÞ � ðH13 � S13EÞ2 ¼ 0 ð208Þ

Ea;c ¼
E3 þ E1 � 2H13S13 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE3 � E1Þ2 þ 4ðH13 � S13E3ÞðH13 � S13E1Þ

q
2ð1 � S2

13Þ
ð209Þ

Table 13. Survey of the VB formulae for the H2 molecule

Limited VB Complete VB

Product functions

O1 ¼  Að1Þ Bð2Þ O3 ¼  Að1Þ Að2Þ
O2 ¼  Bð1Þ Að2Þ O4 ¼  Bð1Þ Bð2Þ

Matrix elements hij ¼ hFijĤHjFji
h11 ¼ h22

¼ 2ðt0 þ 	0Þ þ 2	þ j þ VAB

h33 ¼ h44

¼ 2ðt0 þ 	0Þ þ 2	þ j0 þ VAB

h12 ¼ 2ts þ 4
s þ k þ VABs2 h34 ¼ 2ts þ 4
s þ k þ VABs2

Symmetry adapted functions

1�g;
3 �u:

Y1;2 ¼ ½2ð1 � s2Þ��1=2

�ðO1 �O2Þ

1�g;
1 �u:

Y3;4 ¼ ½2ð1 � s2Þ��1=2

�ðO3 �O4Þ
VB energies

E1;2 ¼ h11 � h12

1 � s2
¼ VAB

þ 2
t0 þ 	0 � ðt þ 
Þs

1 � s2

þ 2	þ j � 2
s � k

1 � s2

E3;4 ¼ h33 � h34

1 � s2
¼ VAB

þ 2
t0 þ 	0 � ðt þ 
Þs

1 � s2

þ 2	þ j0 � 2
s � k

1 � s2
Energy terms for the H2 molecule via

the VB method Interaction matrix elements Hij ¼ hYijĤHjYji
H13 ¼ 2h13

1þs2 ; S13 ¼ 2s
1þs2

h13 ¼ ðt0 þ 	0Þs þ t þ 	s

þ 2
 þ h þ VABs
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The survey of the LVB and CVB formulae is presented in Table 13. The corres-
ponding energies are plotted in Fig. 15. It can be seen that the CVB method im-
proves the LVB approximation only insignificantly for the ground state. This means
that the LVB function already includes a substantial part of the correlation energy.

Amplitude of the Wave Function

Let us visualize the amplitudes of the molecular state functions for the H2 molecule
constructed on the basis of the LVB method. The spatial wave functions in the MO
method expressed in terms of the LVB functions are given by Eqs. (210)–(213).

YMO
1 ð1�gÞ ¼ ½2ð1 þ sÞ��1½ðO1 þ O2Þ þ ðO3 þ O4Þ� ¼ N1ðYVB

1 þYVB
3 Þ ð210Þ

YMO
2 ð1�gÞ ¼ ½2ð1 � sÞ��1½ðO1 þ O2Þ � ðO3 þ O4Þ� ¼ N2ðYVB

1 �YVB
3 Þ ð211Þ

YMO
3 ð3�uÞ ¼ �½2ð1 � s2Þ��1=2½O1 � O2� ¼ �YVB

2 ð212Þ

YMO
6 ð1�uÞ ¼ ½2ð1 � s2Þ��1=2½O3 � O4� ¼ YVB

4 ð213Þ
Now we can compare the spatial wave functions of the 1�g symmetry according to
the LVB method and the MO method: the MO method includes the ‘‘ionic struc-
tures’’ as well but with the same weight as the ‘‘covalent structures’’ Apparently
this overestimation of the ‘‘ionic structures’’ is an intrinsic defect of the MO
method that is improved through CI.

The LVB wave functions in the H2 molecule are given through combinations
(Eqs. (214)–(217)) where the product functions O1ðr1; r2Þ ¼  Aðr1Þ Bðr2Þ,
O2ðr1; r2Þ ¼  Aðr2Þ Bðr1Þ, O3ðr1; r2Þ ¼  Aðr1Þ Aðr2Þ, and O4ðr1; r2Þ ¼  Bðr1Þ
 Bðr2Þ depend upon the coordinates of two electrons.

Y1f1�gðO1;O2Þg ¼ ½O1ðr1; r2Þ þ O2ðr1; r2Þ�=½2ð1 þ s2Þ�1=2 ð214Þ

Y2f1�gðO3;O4Þg ¼ ½O3ðr1; r2Þ þ O4ðr1; r2Þ�=½2ð1 þ s2Þ�1=2 ð215Þ

Y3f3�uðO1;O2Þg ¼ ½O1ðr1; r2Þ � O2ðr1; r2Þ�=½2ð1 � s2Þ�1=2 ð216Þ

Y4f1�uðO3;O4Þg ¼ ½O3ðr1; r2Þ � O4ðr1; r2Þ�=½2ð1 � s2Þ�1=2 ð217Þ
The mapping of the spatial functions along a pair of coordinates fz1; z2g for

fixed fu1 ¼ u2 ¼ �1 ¼ �2 ¼ 0g is shown in Fig. 16. The spatial wave functions for
the singlet states are symmetric with respect to the electron coordinate interchange,
whereas that for the triplet state is antisymmetric.

Except the irrelevant sign, the wave function YVB
3 f3�uðO1;O2Þg matches

exactly its MO counterpart YMO
3 f3�uð�"g�"uÞg. Analogously, the wave function

YVB
4 f1�uðO3;O4Þg equals its MO counterpart YMO

6 f1�uð�#g�"u; �"g�#uÞg.
The ground-state wave function Y1f1�gðO1;O2Þg is constant in the internu-

clear region along z1 ¼ z2. Notice, just this wave function includes a part of the
correlation energy. This is the reason why its amplitude increases when the elec-
trons depart from each other: the maximum of the molecular wave function occurs
for z1 6¼ z2.
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In the next stage the configuration interaction can be applied. We need the CI
mixing coefficients of the expansion (Eq. (218)) or the CVB coefficients mixing the
covalent and ionic structures (Eq. (219)).

Yað1; 2Þ ¼ C1 �YMO
1 þ C2 �YMO

2 ð218Þ

Yað1; 2Þ ¼ C1 �YVB
1 þ C3 �YVB

3 ¼ Na½ðO1 þ O2Þ þ �aðO3 þ O4Þ� ð219Þ
The linear variation method with orthogonal MO functions yields Eq. (220) and

the solution of the secular equation is given by Eq. (221).

H11 � Ea H12

H12 H22 � Ea

� �
C1

C2

� �
¼ 0 ð220Þ

Fig. 16. Amplitudes of the wave functions for H2 along the z-coordinates of two electrons according

to the LVB method
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Ea ¼ ðH11 þ H22Þ=2 � f½ðH11 � H22Þ=2�2 þ H2
12g

1=2 ð221Þ

We have two unknown mixing coefficients and the energy but only two equations.
The third equation is given by the normalization. In order to determine the mixing
coefficients we need to exploit the additional Eq. (222).

C2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � C2

1

q
ð222Þ

Then we get the first independent Eq. (223).

ðH11 � EaÞC1 þ H12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � C2

1

q
¼ 0 ð223Þ

By rearrangement we obtain Eq. (224).

jC1j ¼
H12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðH11 � EaÞ2 þ H2
12

q ð224Þ

The second Eq. (225) finally yields Eq. (226).

H12C1 þ ðH22 � EaÞC2 ¼ 0 ð225Þ

C2 ¼ �C1

H12

H22 � Ea

ð226Þ

The phase of the wave functions cannot be determined so that both mixing coeffi-
cient can alter their signs without influencing the molecular properties.

The computer program returns the CI mixing coefficients (at R¼ 1.44 a0,
aopt¼ 1.194): C1¼ 0.9933 and C2¼�0.1153. The amplitude of the molecular
wave function is shown in Fig. 17 and it is analysed in Table 14.

Fig. 17. Amplitudes of the wave functions for H2 along the z-coordinates of two electrons according

to either MOþCI or the CVB methods
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